
Case Studies in Construction Materials, Год журнала: 2024, Номер unknown, С. e04093 - e04093
Опубликована: Дек. 1, 2024
Язык: Английский
Case Studies in Construction Materials, Год журнала: 2024, Номер unknown, С. e04093 - e04093
Опубликована: Дек. 1, 2024
Язык: Английский
Smart Construction and Sustainable Cities, Год журнала: 2025, Номер 3(1)
Опубликована: Янв. 26, 2025
Язык: Английский
Процитировано
2International Journal of Concrete Structures and Materials, Год журнала: 2024, Номер 18(1)
Опубликована: Сен. 30, 2024
Язык: Английский
Процитировано
15Construction and Building Materials, Год журнала: 2024, Номер 425, С. 136013 - 136013
Опубликована: Апрель 1, 2024
Язык: Английский
Процитировано
8Construction and Building Materials, Год журнала: 2024, Номер 440, С. 137370 - 137370
Опубликована: Июль 16, 2024
Язык: Английский
Процитировано
8Materials Today Communications, Год журнала: 2025, Номер unknown, С. 112081 - 112081
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
1Journal of Composites Science, Год журнала: 2024, Номер 8(8), С. 287 - 287
Опубликована: Июль 26, 2024
High-Performance Concrete (HPC) and Ultra-High-Performance (UHPC) have many applications in civil engineering industries. These two types of concrete as similarities they differences with each other, such the mix design additive powders like silica fume, metakaolin, various fibers, however, optimal percentages mixture properties element these concretes are completely different. This study investigated between to find better mechanical behavior through parameters concrete. In addition, this paper studied correlation matrix machine learning method predict relationship elements properties. way, Linear, Ridge, Lasso, Random Forest, K-Nearest Neighbors (KNN), Decision tree, Partial least squares (PLS) regressions been chosen best regression types. To accuracy, coefficient determination (R2), mean absolute error (MAE), root-mean-square (RMSE) were selected. Finally, PLS, Lasso had results than other regressions, R2 greater 93%, 92%, respectively. general, present shows that HPC UHPC different designs for predicting
Язык: Английский
Процитировано
7International Journal of Electrical Power & Energy Systems, Год журнала: 2024, Номер 159, С. 110070 - 110070
Опубликована: Июнь 3, 2024
To conduct analysis on the field of electricity management in buildings is crucial to contribute clean energy promotion, efficiency, and resilience against climate change. This manuscript proposes a methodology for modeling predictive calibrated system (EMS) using hybrid that combines long short-term memory multilayer perceptron models (LSTM-MLP) optimized by non-dominated sorting genetic algorithm II (NSGA-II). The proposed approach utilizes global forecast (GFS) data anticipate consumption fluctuations optimize use distributed sources, such as photovoltaic (PV) production, based knowledge prices free market one day ahead. trade-off building conducted with NSGA-II, guaranteeing exploration exploitation while minimizing costs wastes. research carried out demonstrates effectiveness LSTM-MLP model advantages NSGA-II hyperparameter tuning balance sustainable practices. tested an existing building, Industrial Engineering School located Campus Lagoas-Marcosende Universidade de Vigo, Spain.
Язык: Английский
Процитировано
5Heliyon, Год журнала: 2024, Номер 10(12), С. e32856 - e32856
Опубликована: Июнь 1, 2024
The use of hybrid fibre-reinforced Self-compacting concrete (HFR-SCC) has escalated recently due to its significant advantages in contrast normal such as increased ductility, crack resistance, and eliminating the need for compaction etc. process determining residual strength properties HFR-SCC after a fire event requires rigorous experimental work extensive resources. Thus, this study presents novel approach develop equations reliable prediction compressive (cs) flexural (fs) using gene expression programming (GEP) algorithm. models were developed data obtained from internationally published literature having eight inputs including water-cement ratio, temperature, fibre content two output parameters i.e., cs fs. Also, different statistical error metrices like mean absolute (MAE), coefficient determination (R2) objective function (OF) employed assess accuracy equations. evaluation external validation both approved suitability predict strengths. sensitivity analysis was performed on which revealed that superplasticizer are some main contributors strength.
Язык: Английский
Процитировано
5Case Studies in Construction Materials, Год журнала: 2024, Номер 22, С. e04112 - e04112
Опубликована: Дек. 11, 2024
Язык: Английский
Процитировано
5Materials Today Sustainability, Год журнала: 2025, Номер unknown, С. 101080 - 101080
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0