
Heliyon, Год журнала: 2024, Номер 10(15), С. e35145 - e35145
Опубликована: Июль 24, 2024
Язык: Английский
Heliyon, Год журнала: 2024, Номер 10(15), С. e35145 - e35145
Опубликована: Июль 24, 2024
Язык: Английский
Scientific Reports, Год журнала: 2024, Номер 14(1)
Опубликована: Авг. 19, 2024
This paper discusses the simultaneous management of active and reactive power a flexible renewable energy-based virtual plant placed in smart distribution system, based on economic, operational, voltage security objectives system operator. The formulated problem aims to specify minimum weighted sum energy cost, loss, index, considering optimal flow model, formulation, operating model plant. unit includes sources, like wind systems, photovoltaic, bio-waste units. Flexibility resources include electric vehicle parking lot price-based demand response. In mentioned scheme, parameters load, vehicles, prices are uncertain. utilizes Unscented Transformation method for modeling uncertainties. Fuzzy decision-making is utilized extract compromised solution. suggested approach innovatively considers with vehicles performed promote network objectives. According numerical results, units capable boosting operation, status by approximately 43%, 47-62%, 26.9%, respectively, studies. Only response can improve security, economic states about 19.5%, 35-47%, 44%, compared model.
Язык: Английский
Процитировано
50Biomedical Signal Processing and Control, Год журнала: 2024, Номер 96, С. 106501 - 106501
Опубликована: Июнь 1, 2024
Язык: Английский
Процитировано
33Biomedical Signal Processing and Control, Год журнала: 2024, Номер 94, С. 106324 - 106324
Опубликована: Апрель 22, 2024
Язык: Английский
Процитировано
30International Journal of Low-Carbon Technologies, Год журнала: 2024, Номер 19, С. 1337 - 1350
Опубликована: Янв. 1, 2024
Abstract This study introduces a novel hybrid methodology for model identification of solid oxide fuel cell (SOFC) stacks by integrating radial basis function-based artificial neural network (RBF-ANN) with flexible Al-Biruni Earth radius optimizer (FA-BERO). The primary objective the proposed method is to augment precision and efficiency SOFC stack modeling considering advantages both RBF-ANN FA-BERO algorithms. main purpose using these two methods optimize structure based on suggested algorithm. other contribution this improving (A-BERO) applying improvements it, including constriction factor elimination phase increase exploration exploitation strength basic A-BERO. To validate effectiveness model, it compared some state-of-the-art models in field, such as multi-armed bandit algorithm (ANN/MABA) rotor Hopfield grey wolf optimization (RHNN/GWO). Furthermore, validated experimental data, final results demonstrate efficacy approach accurately representing intricate behavior stacks. achieves lower error rates (ERs) root mean squared errors (RMSEs) than comparative across different arrangements temperature conditions. show that, instance, 2/12/1 arrangement at 900°C, attains an ER 6.69% RMSE 2.13, while ANN/MABA RHNN/GWO obtain ERs 9.67% 8.54%, well values 24.48 9.23, respectively. also exhibits superior accuracy convergence speed methods, shown current–voltage curves analysis. Consequently, offers valuable tool researchers engineers working domain technology, enabling them better understand performance.
Язык: Английский
Процитировано
22Fuel, Год журнала: 2024, Номер 368, С. 131649 - 131649
Опубликована: Апрель 8, 2024
Язык: Английский
Процитировано
20Journal of Energy Storage, Год журнала: 2025, Номер 108, С. 115171 - 115171
Опубликована: Янв. 5, 2025
Язык: Английский
Процитировано
3Sustainable Energy Technologies and Assessments, Год журнала: 2025, Номер 74, С. 104186 - 104186
Опубликована: Янв. 23, 2025
Язык: Английский
Процитировано
2Electric Power Systems Research, Год журнала: 2024, Номер 241, С. 111341 - 111341
Опубликована: Дек. 12, 2024
Язык: Английский
Процитировано
11Heliyon, Год журнала: 2024, Номер 10(12), С. e32712 - e32712
Опубликована: Июнь 1, 2024
HRES (Hybrid Renewable Energy Systems) has been designed because of the increasing demand for environmentally friendly and sustainable energy. In this study, an Improved Subtraction-Average-Based Optimizer (ISABO) is presented optimizing system by wind power, fuel cells, solar The suggested approach, introducing adaptive mechanisms enhancing processes, improves performance traditional subtraction-average-based optimization. Optimization aims to provide reliable efficient energy while lowering expenses. efficacy ISABO evaluated goal compared with other optimization techniques. According findings, algorithm, when equipped mechanisms, surpasses conventional techniques achieving a 12 % decrease in Net Present Cost (NPC) Levelized Electricity (LCOE) along 45 cost reduction electrolyzers. Through simulations, it shown that algorithm ensures lowest average NPC at $1,357,018.15 also upholding reliability just 0.8 decline Load Point Supply Probability (LPSP) event PV unit failure. This research validates hybrid PV/wind/fuel cell systems present superior cost-effectiveness reliability, thereby opening doors more economical renewable solutions. study reveals are cost-effective than purely wind, PV, or systems. advancement design will enable options.
Язык: Английский
Процитировано
10Journal of Energy Storage, Год журнала: 2024, Номер 98, С. 113007 - 113007
Опубликована: Июль 25, 2024
Язык: Английский
Процитировано
9