The International Journal of Advanced Manufacturing Technology, Год журнала: 2024, Номер 135(7-8), С. 3777 - 3793
Опубликована: Окт. 31, 2024
Язык: Английский
The International Journal of Advanced Manufacturing Technology, Год журнала: 2024, Номер 135(7-8), С. 3777 - 3793
Опубликована: Окт. 31, 2024
Язык: Английский
Algal Research, Год журнала: 2025, Номер unknown, С. 103935 - 103935
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
1Energy Exploration & Exploitation, Год журнала: 2024, Номер 42(6), С. 2191 - 2217
Опубликована: Авг. 2, 2024
Due to rising demand for energy-efficient buildings, advanced predictive models are needed evaluate heating and cooling load requirements. This research presents a unified strategy that blends LSTM networks GBM improve building energy estimates’ precision reliability. Data on usage, weather conditions, occupancy trends, features is collected prepared start the process. model attributes created using sequential relationships initial projections networks. Combining with takes advantage of each model's strengths: LSTM's data processing GBM's complex nonlinear connection capture. Performance measures like RMSE MAE used hybrid validity. Compared individual models, integrated LSTM-GBM method improves prediction accuracy. higher capacity allows real-time management systems, improving operations reducing use. Implementing this in Building Management Systems (BMS) shows its practicality achieving sustainable efficiency.
Язык: Английский
Процитировано
6Journal of Analytical and Applied Pyrolysis, Год журнала: 2024, Номер 182, С. 106723 - 106723
Опубликована: Авг. 28, 2024
Язык: Английский
Процитировано
4Energy and Buildings, Год журнала: 2025, Номер unknown, С. 115440 - 115440
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Engineering Structures, Год журнала: 2025, Номер 335, С. 120276 - 120276
Опубликована: Апрель 15, 2025
Язык: Английский
Процитировано
0Ocean Engineering, Год журнала: 2025, Номер 324, С. 120730 - 120730
Опубликована: Фев. 22, 2025
Язык: Английский
Процитировано
0The International Journal of Advanced Manufacturing Technology, Год журнала: 2025, Номер unknown
Опубликована: Апрель 21, 2025
Язык: Английский
Процитировано
0Sustainability, Год журнала: 2025, Номер 17(9), С. 4090 - 4090
Опубликована: Май 1, 2025
Given their dominant role in energy expenditure within China’s Hot Summer and Warm Winter (HSWW) zone, high-fidelity performance prediction multi-objective optimization framework during the early design phase are critical for achieving sustainable efficiency. This study presents an innovative approach integrating machine learning (ML) algorithms genetic to predict optimize of high-rise office buildings HSWW zone. By Rhino/Grasshopper parametric modeling, Ladybug Tools simulation, Python programming, this developed a building model validated five advanced mature predicting use intensity (EUI) useful daylight illuminance (UDI) based on architectural form parameters under climatic conditions. The results demonstrate that CatBoost algorithm outperforms other models with R2 0.94 CVRMSE 1.57%. Pareto optimal solutions identify substantial shading dimensions, southeast orientations, high aspect ratios, appropriate spatial depths, reduced window areas as determinants optimizing EUI UDI research fills gap existing literature by systematically investigating application ML complex relationships between metrics design. proposed data-driven provides architects engineers scientific decision-making tool early-stage design, offering methodological guidance similar regions.
Язык: Английский
Процитировано
0Sensors, Год журнала: 2024, Номер 24(9), С. 2956 - 2956
Опубликована: Май 6, 2024
The efficient design of Permanent Magnet Synchronous Motors (PMSMs) is crucial for their operational performance. A key parameter, cogging torque, significantly influenced by various structural parameters the motor, complicating optimization motor structures. This paper proposes an method PMSM structures based on heuristic algorithms, named Motor Self-Optimization Lift Algorithm (PMSM-SLA). Initially, a dataset capturing efficiency motors under parameter scenarios created using finite element simulation methods. Building this dataset, batch solution aimed at structure was introduced to identify set that maximize efficiency. approach presented in study enhances optimizing structures, overcoming limitations traditional trial-and-error methods and supporting industrial application design.
Язык: Английский
Процитировано
2Internet of Things, Год журнала: 2024, Номер unknown, С. 101446 - 101446
Опубликована: Ноя. 1, 2024
Язык: Английский
Процитировано
2