Predicting tool life and sound pressure levels in dry turning using machine learning models DOI
Alex Fernandes de Souza, Filipe Alves Neto Verri,

Paulo Henrique da Silva Campos

и другие.

The International Journal of Advanced Manufacturing Technology, Год журнала: 2024, Номер 135(7-8), С. 3777 - 3793

Опубликована: Окт. 31, 2024

Язык: Английский

Artificial intelligence-driven prediction models for the cultivation of Chlorella vulgaris FSP-E in food waste culture medium: A comparative analysis and validation of models DOI
Adityas Agung Ramandani, Jun Wei Roy Chong, Sirasit Srinuanpan

и другие.

Algal Research, Год журнала: 2025, Номер unknown, С. 103935 - 103935

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

Integration of LSTM networks with gradient boosting machines (GBM) for assessing heating and cooling load requirements in building energy efficiency DOI Creative Commons

Reenu Batra,

Shakti Arora, Mayank Mohan Sharma

и другие.

Energy Exploration & Exploitation, Год журнала: 2024, Номер 42(6), С. 2191 - 2217

Опубликована: Авг. 2, 2024

Due to rising demand for energy-efficient buildings, advanced predictive models are needed evaluate heating and cooling load requirements. This research presents a unified strategy that blends LSTM networks GBM improve building energy estimates’ precision reliability. Data on usage, weather conditions, occupancy trends, features is collected prepared start the process. model attributes created using sequential relationships initial projections networks. Combining with takes advantage of each model's strengths: LSTM's data processing GBM's complex nonlinear connection capture. Performance measures like RMSE MAE used hybrid validity. Compared individual models, integrated LSTM-GBM method improves prediction accuracy. higher capacity allows real-time management systems, improving operations reducing use. Implementing this in Building Management Systems (BMS) shows its practicality achieving sustainable efficiency.

Язык: Английский

Процитировано

6

Machine learning-based prediction model for the yield of nitrogen-enriched biomass pyrolysis products: Performance evaluation and interpretability analysis DOI
Dongmei Bi, Hui Wang,

Yinjiao Liu

и другие.

Journal of Analytical and Applied Pyrolysis, Год журнала: 2024, Номер 182, С. 106723 - 106723

Опубликована: Авг. 28, 2024

Язык: Английский

Процитировано

4

AI-Driven Design Optimization for Sustainable Buildings: A Systematic Review DOI Creative Commons

Piragash Manmatharasan,

Girma Bitsuamlak, Katarina Grolinger

и другие.

Energy and Buildings, Год журнала: 2025, Номер unknown, С. 115440 - 115440

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Generative adversarial network approach for predicting tensile behavior and failure pattern of fiber-reinforced cementitious matrices DOI Creative Commons
Aman Kumar, Afshin Marani, Moncef L. Nehdi

и другие.

Engineering Structures, Год журнала: 2025, Номер 335, С. 120276 - 120276

Опубликована: Апрель 15, 2025

Язык: Английский

Процитировано

0

Skip or not: Hybrid machine learning for decision support in strategic port-skipping behavior to enhance liner shipping reliability DOI

Xingcan Fan,

Jing Lyu, Lingye Zhang

и другие.

Ocean Engineering, Год журнала: 2025, Номер 324, С. 120730 - 120730

Опубликована: Фев. 22, 2025

Язык: Английский

Процитировано

0

Improving computer numerical control (CNC) turning performance of AISI D2 steel with nanofluid composites and advanced machine learning techniques DOI
Dame Alemayehu Efa, Naol Dessalegn Dejene,

Dejene Alemayehu Ifa

и другие.

The International Journal of Advanced Manufacturing Technology, Год журнала: 2025, Номер unknown

Опубликована: Апрель 21, 2025

Язык: Английский

Процитировано

0

Machine-Learning-Enhanced Building Performance-Guided Form Optimization of High-Rise Office Buildings in China’s Hot Summer and Warm Winter Zone—A Case Study of Guangzhou DOI Open Access
Xie Xie,

Ni Yang,

Tianzi Zhang

и другие.

Sustainability, Год журнала: 2025, Номер 17(9), С. 4090 - 4090

Опубликована: Май 1, 2025

Given their dominant role in energy expenditure within China’s Hot Summer and Warm Winter (HSWW) zone, high-fidelity performance prediction multi-objective optimization framework during the early design phase are critical for achieving sustainable efficiency. This study presents an innovative approach integrating machine learning (ML) algorithms genetic to predict optimize of high-rise office buildings HSWW zone. By Rhino/Grasshopper parametric modeling, Ladybug Tools simulation, Python programming, this developed a building model validated five advanced mature predicting use intensity (EUI) useful daylight illuminance (UDI) based on architectural form parameters under climatic conditions. The results demonstrate that CatBoost algorithm outperforms other models with R2 0.94 CVRMSE 1.57%. Pareto optimal solutions identify substantial shading dimensions, southeast orientations, high aspect ratios, appropriate spatial depths, reduced window areas as determinants optimizing EUI UDI research fills gap existing literature by systematically investigating application ML complex relationships between metrics design. proposed data-driven provides architects engineers scientific decision-making tool early-stage design, offering methodological guidance similar regions.

Язык: Английский

Процитировано

0

A Systematic Optimization Method for Permanent Magnet Synchronous Motors Based on SMS-EMOA DOI Creative Commons
Bo Yuan, Ping Chen, Ershen Wang

и другие.

Sensors, Год журнала: 2024, Номер 24(9), С. 2956 - 2956

Опубликована: Май 6, 2024

The efficient design of Permanent Magnet Synchronous Motors (PMSMs) is crucial for their operational performance. A key parameter, cogging torque, significantly influenced by various structural parameters the motor, complicating optimization motor structures. This paper proposes an method PMSM structures based on heuristic algorithms, named Motor Self-Optimization Lift Algorithm (PMSM-SLA). Initially, a dataset capturing efficiency motors under parameter scenarios created using finite element simulation methods. Building this dataset, batch solution aimed at structure was introduced to identify set that maximize efficiency. approach presented in study enhances optimizing structures, overcoming limitations traditional trial-and-error methods and supporting industrial application design.

Язык: Английский

Процитировано

2

A framework for anomaly classification in Industrial Internet of Things systems DOI Creative Commons
Martha Rodríguez, Diana P. Tobón, Danny Múnera

и другие.

Internet of Things, Год журнала: 2024, Номер unknown, С. 101446 - 101446

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

2