Induction of platelet-shaped ferromagnetic nanoparticles to analyze heat transport mechanism in peristaltic activity of blood-based Casson liquid in non-symmetric configuration with heat source and viscous dissipation aspects DOI
Arif Hussain, S. N. Kazmi,

S. Bilal

и другие.

Journal of Thermal Analysis and Calorimetry, Год журнала: 2024, Номер 149(22), С. 13031 - 13043

Опубликована: Окт. 19, 2024

Язык: Английский

Analysis of nonlinear complex heat transfer MHD flow of Jeffrey nanofluid over an exponentially stretching sheet via three phase artificial intelligence and Machine Learning techniques DOI
A. Zeeshan,

Nouman Khalid,

R. Ellahi

и другие.

Chaos Solitons & Fractals, Год журнала: 2024, Номер 189, С. 115600 - 115600

Опубликована: Окт. 7, 2024

Язык: Английский

Процитировано

47

Advanced intelligent computing ANN for momentum, thermal, and concentration boundary layers in plasma electro hydrodynamics burgers fluid DOI
Muhammad Imran Khan,

Refka Ghodhbani,

T.A. Taha

и другие.

International Communications in Heat and Mass Transfer, Год журнала: 2024, Номер 159, С. 108195 - 108195

Опубликована: Окт. 23, 2024

Язык: Английский

Процитировано

19

Intelligent Computing Technique to Analyze the Two-Phase Flow of Dusty Trihybrid Nanofluid with Cattaneo-Christov Heat Flux Model Using Levenberg-Marquardt Neural-Networks DOI Creative Commons
Cyrus Raza Mirza, Munawar Abbas, Sahar Ahmed Idris

и другие.

Case Studies in Thermal Engineering, Год журнала: 2025, Номер unknown, С. 105891 - 105891

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

10

The impact of rotation on the onset of cellular convective movement in a casson fluid saturated permeable layer with temperature dependent thermal conductivity and viscosity deviations DOI
Dhananjay Yadav, Mukesh Kumar Awasthi, Ravi Ragoju

и другие.

Chinese Journal of Physics, Год журнала: 2024, Номер 91, С. 262 - 277

Опубликована: Авг. 2, 2024

Язык: Английский

Процитировано

10

Artificial neural network with incompressible smoothed particle hydrodynamics for exothermic chemical reaction on heat and mass transfer in a rectangular annulus DOI Creative Commons
Alaa Allakany,

Noura Alsedias,

Abdelraheem M. Aly

и другие.

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Янв. 31, 2025

This work aims to simulate the impacts of exothermic reaction and Soret-Dufour numbers on double diffusion Nano Enhanced Phase Change Materials (NEPCM) inside a porous annulus. The complex rectangular annulus contains two ellipses triangles walls' vertical sides. proposals closed domains during heat/mass transfer NEPCM can be used in energy savings, cooling electronic devices, heat exchangers. fractional-time derivative governing systems is solved numerically based ISPH method. artificial neural network (ANN) combined with results predict average Nusselt number Nu¯ Sherwood Sh¯ . main objective establishing ANN model this investigation create reliable predictive instrument capable estimating values described dimensionless Frank-Kamenetskii (Fk = 0-1), Darcy (Da 10-2-10-5), Dufour (Du 0-0.1), buoyancy ratio (N - 2 5), Rayleigh (Ra 103-106), Lewis (Le 1-20), Soret (Sr 0-0.2), fusion temperature (θf 0.05-0.9), fractional order parameter (α 0.9-1) thermosolutal convection suspension. overall transition as well velocity field are dramatically enhanced when Ra N were boosted. time helps reach steady state less instants. phase change material (PCM) always changed distribution changes controlled by temperature. struggled nanofluid flow at lower number. promising factor enhancing distributions an As result, may applied various engineering industrial fields because it significant terms improving transmission material. introduced precise agreement prediction actual Then, present accurately estimate values.

Язык: Английский

Процитировано

1

Levenberg–Marquardt neural networks (LMNNs) for free convective Casson fluid flow in partially heated square cavity with rectangular heat source DOI Creative Commons
Khalil Ur Rehman, Wasfı Shatanawi, Yian Yian Lok

и другие.

AIP Advances, Год журнала: 2025, Номер 15(2)

Опубликована: Фев. 1, 2025

The study of Casson fluid in cavities is relevant different fields like biomedical simulations, chemical processing, lubrication, reactor design, and microfluidic devices, to mention just a few. Therefore, it remains always topic great interest for researchers explore the flow field aspects both theoretical experimental frames. Owing such motivation, we offered an integration neural networks with finite element method free convective thermal partially heated square cavity rooted rectangular heat source. source uniformly heated, bottom wall taken non-uniform heating. right left walls are engaged cold. top considered adiabatic. equations mathematically modeled solved by using hybrid meshed based method. Nusselt number along predicted AI-based network model. performance constructed model tested through regression coefficients mean error. artificial (ANN) appears be well-trained capable reliably forecasting transfer this system, on close match between ANN predictions real data number. It found that horizontal vertical velocities significantly increase as Rayleigh rises, indicating more intense flow. Furthermore, rises higher numbers.

Язык: Английский

Процитировано

0

ANN-Based Prediction and RSM Optimization of Radiative Heat Transfer in Couple Stress Nanofluids with Thermodiffusion Effects DOI Open Access
Reima Daher Alsemiry, Sameh E. Ahmed, Mohamed R. Eid

и другие.

Processes, Год журнала: 2025, Номер 13(4), С. 1055 - 1055

Опубликована: Апрель 1, 2025

This research investigates the impact of second-order slip conditions, Stefan flow, and convective boundary constraints on stagnation-point flow couple stress nanofluids over a solid sphere. The nanofluid density is expressed as nonlinear function temperature, while diffusion-thermo effect, chemical reaction, thermal radiation are incorporated through linear models. governing equations transformed using appropriate non-similar transformations solved numerically via finite difference method (FDM). Key physical parameters, including heat transfer rate, analyzed in relation to Dufour number, velocity, parameters an artificial neural network (ANN) framework. Furthermore, response surface methodology (RSM) employed optimize skin friction, transfer, mass by considering influence radiation, slip, reaction rate. Results indicate that velocity enhances behavior reducing temperature concentration distributions. Additionally, increase number leads higher profiles, ultimately lowering overall ANN-based predictive model exhibits high accuracy with minimal errors, offering robust tool for analyzing optimizing transport characteristics nanofluids.

Язык: Английский

Процитировано

0

Entropy generation analysis of Carreau-Yasuda hybrid nanofluid flow with Thompson-Troian boundary conditions and Cattaneo-Christov heat flux DOI
S. Suneetha,

Rajavath Narayana Naik,

K. S. Srinivasa Babu

и другие.

International Journal of Ambient Energy, Год журнала: 2025, Номер 46(1)

Опубликована: Апрель 3, 2025

Язык: Английский

Процитировано

0

Impact of Radiation on MHD heat and mass transfer of Williamson Nanofluid over a non-linear stretching sheet with melting and heat source - A numerical investigation DOI Creative Commons

Anagandula Srinu,

K. Sreeram Reddy,

B. Shankar Goud

и другие.

International Journal of Thermofluids, Год журнала: 2025, Номер unknown, С. 101231 - 101231

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Dynamics of time-dependent Ag and TiO2/blood Casson hybrid nanofluid squeezing flow past a Riga plate subject to an artificial neural network approach: an application to drug delivery DOI

M. M. Alqarni,

Emad E. Mahmoud, Mansourah Aljohani

и другие.

Mechanics of Time-Dependent Materials, Год журнала: 2025, Номер 29(2)

Опубликована: Май 30, 2025

Язык: Английский

Процитировано

0