Journal of Thermal Analysis and Calorimetry, Год журнала: 2024, Номер 149(22), С. 13031 - 13043
Опубликована: Окт. 19, 2024
Язык: Английский
Journal of Thermal Analysis and Calorimetry, Год журнала: 2024, Номер 149(22), С. 13031 - 13043
Опубликована: Окт. 19, 2024
Язык: Английский
Chaos Solitons & Fractals, Год журнала: 2024, Номер 189, С. 115600 - 115600
Опубликована: Окт. 7, 2024
Язык: Английский
Процитировано
47International Communications in Heat and Mass Transfer, Год журнала: 2024, Номер 159, С. 108195 - 108195
Опубликована: Окт. 23, 2024
Язык: Английский
Процитировано
19Case Studies in Thermal Engineering, Год журнала: 2025, Номер unknown, С. 105891 - 105891
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
10Chinese Journal of Physics, Год журнала: 2024, Номер 91, С. 262 - 277
Опубликована: Авг. 2, 2024
Язык: Английский
Процитировано
10Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Янв. 31, 2025
This work aims to simulate the impacts of exothermic reaction and Soret-Dufour numbers on double diffusion Nano Enhanced Phase Change Materials (NEPCM) inside a porous annulus. The complex rectangular annulus contains two ellipses triangles walls' vertical sides. proposals closed domains during heat/mass transfer NEPCM can be used in energy savings, cooling electronic devices, heat exchangers. fractional-time derivative governing systems is solved numerically based ISPH method. artificial neural network (ANN) combined with results predict average Nusselt number Nu¯ Sherwood Sh¯ . main objective establishing ANN model this investigation create reliable predictive instrument capable estimating values described dimensionless Frank-Kamenetskii (Fk = 0-1), Darcy (Da 10-2-10-5), Dufour (Du 0-0.1), buoyancy ratio (N - 2 5), Rayleigh (Ra 103-106), Lewis (Le 1-20), Soret (Sr 0-0.2), fusion temperature (θf 0.05-0.9), fractional order parameter (α 0.9-1) thermosolutal convection suspension. overall transition as well velocity field are dramatically enhanced when Ra N were boosted. time helps reach steady state less instants. phase change material (PCM) always changed distribution changes controlled by temperature. struggled nanofluid flow at lower number. promising factor enhancing distributions an As result, may applied various engineering industrial fields because it significant terms improving transmission material. introduced precise agreement prediction actual Then, present accurately estimate values.
Язык: Английский
Процитировано
1AIP Advances, Год журнала: 2025, Номер 15(2)
Опубликована: Фев. 1, 2025
The study of Casson fluid in cavities is relevant different fields like biomedical simulations, chemical processing, lubrication, reactor design, and microfluidic devices, to mention just a few. Therefore, it remains always topic great interest for researchers explore the flow field aspects both theoretical experimental frames. Owing such motivation, we offered an integration neural networks with finite element method free convective thermal partially heated square cavity rooted rectangular heat source. source uniformly heated, bottom wall taken non-uniform heating. right left walls are engaged cold. top considered adiabatic. equations mathematically modeled solved by using hybrid meshed based method. Nusselt number along predicted AI-based network model. performance constructed model tested through regression coefficients mean error. artificial (ANN) appears be well-trained capable reliably forecasting transfer this system, on close match between ANN predictions real data number. It found that horizontal vertical velocities significantly increase as Rayleigh rises, indicating more intense flow. Furthermore, rises higher numbers.
Язык: Английский
Процитировано
0Processes, Год журнала: 2025, Номер 13(4), С. 1055 - 1055
Опубликована: Апрель 1, 2025
This research investigates the impact of second-order slip conditions, Stefan flow, and convective boundary constraints on stagnation-point flow couple stress nanofluids over a solid sphere. The nanofluid density is expressed as nonlinear function temperature, while diffusion-thermo effect, chemical reaction, thermal radiation are incorporated through linear models. governing equations transformed using appropriate non-similar transformations solved numerically via finite difference method (FDM). Key physical parameters, including heat transfer rate, analyzed in relation to Dufour number, velocity, parameters an artificial neural network (ANN) framework. Furthermore, response surface methodology (RSM) employed optimize skin friction, transfer, mass by considering influence radiation, slip, reaction rate. Results indicate that velocity enhances behavior reducing temperature concentration distributions. Additionally, increase number leads higher profiles, ultimately lowering overall ANN-based predictive model exhibits high accuracy with minimal errors, offering robust tool for analyzing optimizing transport characteristics nanofluids.
Язык: Английский
Процитировано
0International Journal of Ambient Energy, Год журнала: 2025, Номер 46(1)
Опубликована: Апрель 3, 2025
Язык: Английский
Процитировано
0International Journal of Thermofluids, Год журнала: 2025, Номер unknown, С. 101231 - 101231
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Mechanics of Time-Dependent Materials, Год журнала: 2025, Номер 29(2)
Опубликована: Май 30, 2025
Язык: Английский
Процитировано
0