Innovative Telecom Fraud Detection: A New Dataset and an Advanced Model with RoBERTa and Dual Loss Functions DOI Creative Commons
Jun Li, Cheng Zhang, Lanlan Jiang

и другие.

Applied Sciences, Год журнала: 2024, Номер 14(24), С. 11628 - 11628

Опубликована: Дек. 12, 2024

Telecom fraud has emerged as one of the most pressing challenges in criminal field. With advancements artificial intelligence, telecom texts have become increasingly covert and deceptive. Existing prevention methods, such mobile number tracking, detection, traditional machine-learning-based text recognition, struggle terms their real-time performance identifying fraud. Additionally, scarcity Chinese data limited research this area. In paper, we propose a detection model, RoBERTa-MHARC, which combines RoBERTa with multi-head attention mechanism residual connections. First, model selects categories from CCL2023 dataset basic samples merges them collected data, creating five-category covering impersonation customer service, leadership acquaintances, loans, public security fraud, normal text. During training, integrates enhances its training efficiency through Finally, improves multi-class classification accuracy by incorporating an inconsistency loss function alongside cross-entropy loss. The experimental results demonstrate that our performs well on multiple benchmark datasets, achieving F1 score 97.65 FBS dataset, 98.10 own 93.69 news dataset.

Язык: Английский

Microservice-Based Distributed Application for Unifying Social Networks DOI

Theodor Stanica,

Mirel Coşulschi,

Marian Cristian Mihăescu

и другие.

Communications in computer and information science, Год журнала: 2025, Номер unknown, С. 77 - 88

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Textual Fake News Detection Based on FastText Embedding and Deep Learning DOI
Iman Qays Abduljaleel, Israa Hazem Ali

Communications in computer and information science, Год журнала: 2025, Номер unknown, С. 167 - 181

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

A survey of text classification based on pre-trained language model DOI
Yujia Wu, Jun Wan

Neurocomputing, Год журнала: 2024, Номер 616, С. 128921 - 128921

Опубликована: Ноя. 15, 2024

Язык: Английский

Процитировано

2

The impact of artificial intelligence in the diagnosis and management of acoustic neuroma: A systematic review DOI

Hadeel Alsaleh

Technology and Health Care, Год журнала: 2024, Номер 32(6), С. 3801 - 3813

Опубликована: Авг. 2, 2024

Schwann cell sheaths are the source of benign, slowly expanding tumours known as acoustic neuromas (AN). The diagnostic and treatment approaches for AN must be patient-centered, taking into account unique factors preferences.

Язык: Английский

Процитировано

1

ST-MambaSync: Complement the power of Mamba and transformer fusion for less computational cost in spatial-temporal traffic forecasting DOI
Zhiqi Shao, Ze Wang,

Xusheng Yao

и другие.

Information Fusion, Год журнала: 2024, Номер unknown, С. 102872 - 102872

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

1

Location metadata extraction from Geosocial data of Road Accident using Deep Learning models DOI
Tamal Mukherjee,

Soumitra Sinhahajari,

Debargha Mukherjee

и другие.

Evolving Systems, Год журнала: 2024, Номер 16(1)

Опубликована: Ноя. 14, 2024

Язык: Английский

Процитировано

0

Automating the Formation of the Conceptual Structure of the Knowledge Base Using Deep Learning DOI Creative Commons
Denys Symonov

Cybernetics and Computer Technologies, Год журнала: 2024, Номер 4, С. 110 - 120

Опубликована: Дек. 18, 2024

Introduction. The ability to automate processes is a key aspect of modern information technology. construction and use the conceptual structure knowledge base becoming an urgent need in world, where amount growing exponentially. processes, including ontologies, which requires extraction from full-text sources their automatic structuring, important. Knowledge bases are used manage complex dynamic systems by ensuring storage, organization, access large that allows for effective analysis prediction behavior such systems. purpose paper. paper demonstrate effectiveness using deep learning methods formation base. study also aims show how integration with can improve quality forecasts increase efficiency rehabilitation trajectory management. Results. algorithm successfully extracted processed symptom medical cases, effectively handling duplicates synonyms. utilization cosine similarity enabled identification synonymous symptoms within established base, facilitating seamless new while preventing redundancy. system demonstrated its capability discern should be incorporated into omitted based on existing entries. outcomes underscore potential this automated approach enhance contribute refinement predictive models healthcare domain. Conclusions. automating enhances filling comprehensiveness crucial building patient trajectories improving decision support. Keywords: Knowledge-Oriented Management Systems, Support Vector Machine, Word2Vec, Skip-Gram, BioBERT.

Язык: Английский

Процитировано

0

Multi-Intent Recognition of Power Customer Service Work Orders Based on Graph Neural Networks and Attention Mechanism DOI
Yuqi Zhang,

Zixing Yang,

P. L. Li

и другие.

Опубликована: Ноя. 22, 2024

Язык: Английский

Процитировано

0

Online performance prediction using the fusion model of LightGBM and TabNet for large laser facilities DOI

Zizhou He,

Wenwen Shen, Suicheng Li

и другие.

International Journal of Data Science and Analytics, Год журнала: 2024, Номер unknown

Опубликована: Ноя. 20, 2024

Язык: Английский

Процитировано

0

Relevance of the Retrieval of Hadith Information (RoHI) using Bidirectional Encoder Representations from Transformers (BERT) in religious education media DOI Creative Commons
Ana Tsalitsatun Ni’mah, Rika Yunitarini

BIO Web of Conferences, Год журнала: 2024, Номер 146, С. 01041 - 01041

Опубликована: Янв. 1, 2024

This research explores the impact of integrating Bidirectional Encoder Representations from Transformers (BERT) into Retrieval Hadith Information (RoHI) application within realm religious education media. Hadith, sayings and actions Prophet Muhammad, play a pivotal role in Islamic teachings, requiring accurate contextually relevant retrieval for educational purposes. RoHI, designed to enhance access comprehension literature, employs BERT's advanced natural language processing capabilities. The study assesses how BERT-enhanced RoHI facilitates efficient interpretation texts. By leveraging ability capture intricate patterns semantics, aims precision contextual appropriateness retrieved information. also discusses implications digital learning platforms, emphasizing potential NLP technologies foster broader knowledge promote inclusive practices. contributes field by proposing framework that integrates AI techniques with education, ensuring learners receive meaningful information tailored their needs. findings highlight BERT revolutionizing processes studies, paving way more effective tools resources environments.

Язык: Английский

Процитировано

0