ChatGPT and CLT: Investigating Differences in Multimodal Processing DOI Creative Commons
Michael Cahalane, Samuel N. Kirshner

Journal of Economy and Technology, Год журнала: 2024, Номер unknown

Опубликована: Дек. 1, 2024

Язык: Английский

The Impact of Artificial Intelligence on Research Efficiency DOI Creative Commons
Mitra Madanchian, Hamed Taherdoost

Results in Engineering, Год журнала: 2025, Номер unknown, С. 104743 - 104743

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Research on the Construction and Application of Problem-Method-Oriented Academic Graph Empowered by LLM DOI

Qigang Liu,

Yinfan Wang,

Lifeng Mu

и другие.

Research Square (Research Square), Год журнала: 2025, Номер unknown

Опубликована: Апрель 16, 2025

Abstract Nowadays, the volume of literature in each field is huge and growing rapidly, which posts challenge to researchers’ review. In this circumstance, developing useful tool for achieving efficient management high value. Traditional tools, such as tools key word searching, paper recommendation, relation visualization, keyword cloud drawing, are not suitable conducting content-level To address issues traditional a novel problem method-oriented fine-grained academic graph proposed facilitate exploration research questions, methodologies, study perspectives, their connections hidden massive literature. For building graph, new ontology dedicated describing features developed, an innovative multi-relation join extraction model proposed, creative approach leveraging Large Language Models (LLM) augment triplet results generated by supervised-learning developed. Experiments on widely used benchmark datasets show that able achieve at least 8.01% 8.65% improvement entity identification classification respectively, compared with state-of-the-art models. The visualized demonstration shows our capable accurately capturing network, method network hot topics Q&A system supported demonstrates really helpful data code work available https://github.com/asilcr/AcademicGraph.

Язык: Английский

Процитировано

0

Identifying exaggeration in ESG reports using machine learning techniques DOI Creative Commons

Yunfang Luo,

Xiling Cui,

Qiang Liu

и другие.

Data and Information Management, Год журнала: 2024, Номер unknown, С. 100084 - 100084

Опубликована: Сен. 1, 2024

Язык: Английский

Процитировано

0

AI and cybersecurity, business protection in an interconnected world: systematic literature review DOI
Iris María Cantillo Velásquez,

Jhon Wolfgang Echeverry David,

Yerlis Patricia Martínez Taborda

и другие.

Management, Год журнала: 2024, Номер 3, С. 116 - 116

Опубликована: Окт. 8, 2024

In an increasingly interconnected world, cyber threats are constantly evolving, with malicious actors developing sophisticated methods to attack enterprise systems. Traditional cybersecurity methods, such as firewalls and antivirus software, insufficient protect organizations from these advanced threats. A more proactive approach is needed identify stop before they cause significant damage. This research seeks understand the current state of artificial intelligence (AI) in cybersecurity, best practices methodologies for implementing effective AI solutions. To do this, authors were based on a systematic review literature, adopting AI, business protection fundamental categories. The search was mainly databases engines Scopus, Science Direct Redalyc. processed information graphed through VOSviewer software Lens.org platform. usefulness applications evident. entails challenge updating tools order achieve greater security users

Язык: Английский

Процитировано

0

ChatGPT and CLT: Investigating Differences in Multimodal Processing DOI Creative Commons
Michael Cahalane, Samuel N. Kirshner

Journal of Economy and Technology, Год журнала: 2024, Номер unknown

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

0