Lecture notes in computer science, Год журнала: 2023, Номер unknown, С. 14 - 25
Опубликована: Янв. 1, 2023
Язык: Английский
Lecture notes in computer science, Год журнала: 2023, Номер unknown, С. 14 - 25
Опубликована: Янв. 1, 2023
Язык: Английский
Remote Sensing, Год журнала: 2024, Номер 16(4), С. 665 - 665
Опубликована: Фев. 13, 2024
The integration of optical and SAR datasets through ensemble machine learning models shows promising results in urban remote sensing applications. multi-sensor enhances the accuracy information extraction. This research presents a comparison two classifiers (random forest extreme gradient boost (XGBoost)) using an features simple layer stacking (SLS) techniques. Therefore, Sentinel-1 (SAR) Landsat 8 (optical) were used with textures enhanced modified indices to extract for year 2023. classification process utilized algorithms, random XGBoost, impervious surface study focused on three significant East Asian cities diverse dynamics: Jakarta, Manila, Seoul. proposed novel index called Normalized Blue Water Index (NBWI), which distinguishes water from other was as feature. Results showed overall 81% UIS XGBoost 77% RF while classifying land use cover into four major classes (water, vegetation, bare soil, impervious). However, framework classifier outperformed algorithm Dynamic World (DW) data product comparatively higher accuracy. Still, all show poor separability soil class compared ground truth data. accuracy, highlighting its potential
Язык: Английский
Процитировано
38Sensors, Год журнала: 2023, Номер 23(23), С. 9502 - 9502
Опубликована: Ноя. 29, 2023
The realm of medical imaging is a critical frontier in precision diagnostics, where the clarity image paramount. Despite advancements technology, noise remains pervasive challenge that can obscure crucial details and impede accurate diagnoses. Addressing this, we introduce novel teacher–student network model leverages potency our bespoke NoiseContextNet Block to discern mitigate with unprecedented precision. This innovation coupled an iterative pruning technique aimed at refining for heightened computational efficiency without compromising fidelity denoising. We substantiate superiority effectiveness approach through comprehensive suite experiments, showcasing significant qualitative enhancements across multitude modalities. visual results from vast array tests firmly establish method’s dominance producing clearer, more reliable images diagnostic purposes, thereby setting new benchmark
Язык: Английский
Процитировано
23Journal of Visual Communication and Image Representation, Год журнала: 2024, Номер 101, С. 104179 - 104179
Опубликована: Май 1, 2024
Infrared and visible image fusion represents a significant segment within the domain. The recent surge in processing hardware advancements, including GPUs, TPUs, cloud computing platforms, has facilitated of extensive datasets from multiple sensors. Given remarkable proficiency neural networks feature extraction fusion, their application infrared emerged as prominent research area years. This article begins by providing an overview current mainstream algorithms for based on networks, detailing principles various algorithms, representative works, respective advantages disadvantages. Subsequently, it introduces domain-relevant datasets, evaluation metrics, some typical scenarios. Finally, conducts qualitative quantitative evaluations results state-of-the-art offers future prospects experimental results.
Язык: Английский
Процитировано
8Journal of Optics, Год журнала: 2025, Номер unknown
Опубликована: Фев. 26, 2025
Язык: Английский
Процитировано
0Optics & Laser Technology, Год журнала: 2025, Номер 188, С. 112927 - 112927
Опубликована: Апрель 8, 2025
Язык: Английский
Процитировано
0Computers and Electronics in Agriculture, Год журнала: 2024, Номер 222, С. 109078 - 109078
Опубликована: Май 29, 2024
Язык: Английский
Процитировано
4Applied Intelligence, Год журнала: 2025, Номер 55(4)
Опубликована: Янв. 3, 2025
Язык: Английский
Процитировано
0Journal of Electrical Engineering, Год журнала: 2025, Номер 76(1), С. 7 - 17
Опубликована: Фев. 1, 2025
Abstract Thermal vision significantly enhances visibility under various environmental conditions. So, this paper presents a comprehensive study on the importance of thermal in improving image fusion human visual perception through subjective evaluation. The focuses three imaging sensors commonly used computer applications: long-wavelength infrared (LWIR), visible (VIS), and near-infrared (NIR). Four alternatives (LWIR+VIS, LWIR+NIR, NIR+VIS, LWIR+NIR+VIS) are produced using reliable deep learning approach assessed both tests objective metrics. evaluation is performed involving 15 military students officers from University Defence Belgrade, while assessment elaborated eight no-reference measures. Results indicate that fused images with information show better performance than non-thermal based alternative (NIR+VIS). Moreover, LWIR+NIR+VIS LWIR+NIR provide similar appearance, demonstrating bimodal (LWIR+NIR) can be sufficient to produce highly informative image. Additionally, degree agreement between scores calculated. simple edge intensity measure shows highest agreement, entropy demonstrates second-best score.
Язык: Английский
Процитировано
0Infrared Physics & Technology, Год журнала: 2025, Номер unknown, С. 105780 - 105780
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Digital Signal Processing, Год журнала: 2024, Номер 149, С. 104473 - 104473
Опубликована: Март 19, 2024
Язык: Английский
Процитировано
3