Research on Lightweight Method of Insulator Target Detection Based on Improved SSD DOI Creative Commons
Bing Zeng,

Yu Zhou,

Dilin He

и другие.

Sensors, Год журнала: 2024, Номер 24(18), С. 5910 - 5910

Опубликована: Сен. 12, 2024

Aiming at the problems of a large volume, slow processing speed, and difficult deployment in edge terminal, this paper proposes lightweight insulator detection algorithm based on an improved SSD. Firstly, original feature extraction network VGG-16 is replaced by Ghost Module to initially achieve model. A Feature Pyramid structure Network (FPN+PAN) are integrated into Neck part Simplified Spatial Pooling Fast (SimSPPF) module introduced realize integration local features global features. Secondly, multiple Channel Squeeze-and-Excitation (scSE) attention mechanisms make model pay more channels containing important information. The six heads reduced four improve inference speed network. In order recognition performance occluded overlapping targets, DIoU-NMS was used replace non-maximum suppression (NMS). Furthermore, channel pruning strategy reduce unimportant weight matrix model, knowledge distillation fine-adjust after pruning, so as ensure accuracy. experimental results show that parameter number proposed from 26.15 M 0.61 M, computational load 118.95 G 1.49 G, mAP increased 96.8% 98%. Compared with other models, not only guarantees accuracy algorithm, but also greatly reduces which provides support for realization visible light target intelligence.

Язык: Английский

Dense Buddha head object detection and counting YOLOv8 network based on multi-scale attention and data augmentation fusion DOI Creative Commons
Yang Li,

Yalun Wang,

Dong Sui

и другие.

Опубликована: Фев. 22, 2025

Язык: Английский

Процитировано

0

YOLOv8-Based Photovoltaic Module Detection Using Aerial Imagery DOI
N. Kellil,

C. Moussaoui,

A. Mellit

и другие.

Lecture notes in networks and systems, Год журнала: 2025, Номер unknown, С. 321 - 329

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Product Detection in Unmanned Supermarkets Based on Optimized YOLOv8 DOI
Fei Zhao, Liang Gao,

Yang He

и другие.

Communications in computer and information science, Год журнала: 2025, Номер unknown, С. 233 - 240

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Recognition of Cordyceps Based on Machine Vision and Deep Learning DOI Creative Commons
Z. C. Xia, Aimin Sun, Huei‐Tse Hou

и другие.

Agriculture, Год журнала: 2025, Номер 15(7), С. 713 - 713

Опубликована: Март 27, 2025

In a natural environment, due to the small size of caterpillar fungus, its indistinct features, similar color surrounding weeds and background, overlapping instances identifying fungus poses significant challenges. To address these issues, this paper proposes new MRAA network, which consists feature fusion pyramid network (MRFPN) backbone N-CSPDarknet53. MRFPN is used solve problem weak features. N-CSPDarknet53, Da-Conv module proposed background interference problems in shallow maps. The significantly improves accuracy, achieving an accuracy rate 0.202 APS for small-target recognition, represents 12% increase compared baseline 0.180 APS. Additionally, model (9.88 M), making it lightweight. It easy deploy embedded devices, greatly promotes development application identification.

Язык: Английский

Процитировано

0

Identification of Hollow Edamame Using HSI Based on Deep Learning DOI
Shenghong Li,

Xiangquan Gao,

Shangsheng Qin

и другие.

Food Control, Год журнала: 2025, Номер unknown, С. 111329 - 111329

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Simulation-Based Performance Assessment of ORB, YOLOv8, and Picking Strategies for Single-Arm Robot Conveyor Belt Pick-and-Place Operations DOI
Du Q. Huynh,

Huan Thien Tran

Research Square (Research Square), Год журнала: 2025, Номер unknown

Опубликована: Апрель 7, 2025

Abstract Pick-and-place robots play a crucial role in industrial automation, helping to lower labor costs, minimize errors, and improve production efficiency. Many image processing methods have been proposed facilitate the pick-and-place operation. However, performance of these is sensitive lighting conditions, presence occlusions, variations object appearance. Although many challenges can be overcome through use deep learning methods, direct comparison coupled with an analysis different picking strategies, lacking. The present study addresses this gap by conducting simulation-based evaluation accuracy time ORB algorithm YOLOv8 model for recognition. effects two strategies (FIFO Euclidean Distance) on system throughput are also explored. simulation results show that achieves higher (98%) significantly faster (138 ms) than (97.33% 715.24 ms time). Additionally, FIFO strategy improves productivity 13% compared Distance strategy. Overall, findings provide valuable insights into optimizing robotic operations automation settings.

Язык: Английский

Процитировано

0

Enhanced YOLOv8 for Efficient Parcel Identification in Disordered Logistics Environments DOI Creative Commons
Han Yu,

Zhang Fengshou,

Zhuang Gaoshuai

и другие.

International Journal of Computational Intelligence Systems, Год журнала: 2025, Номер 18(1)

Опубликована: Апрель 7, 2025

Язык: Английский

Процитировано

0

Yolo-Sbc: Swin Transformer Combined with Modified Yolo Framework for Pcb Defect Detection DOI

S. Han,

Di Zhou, Xiao Zhuang

и другие.

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

DSOD-YOLO: A lightweight dual feature extraction method for small target detection DOI

Yuan Nie,

Huicheng Lai, Guxue Gao

и другие.

Digital Signal Processing, Год журнала: 2025, Номер 164, С. 105268 - 105268

Опубликована: Апрель 28, 2025

Язык: Английский

Процитировано

0

An Automated Clubbed Fingers Detection System Based on YOLOv8 and U-Net: A Tool for Early Prediction of Lung and Cardiovascular Diseases DOI Creative Commons
Wen-Shin Hsu,

G.-Y. Liu,

Sujuan Chen

и другие.

Diagnostics, Год журнала: 2024, Номер 14(19), С. 2234 - 2234

Опубликована: Окт. 7, 2024

Background/Objectives: Lung and cardiovascular diseases are leading causes of mortality worldwide, yet early detection remains challenging due to the subtle symptoms. Digital clubbing, characterized by bulbous enlargement fingertips, serves as an indicator these diseases. This study aims develop automated system for detecting digital clubbing using deep-learning models real-time monitoring intervention. Methods: The proposed utilizes YOLOv8 model object U-Net image segmentation, integrated with ESP32-CAM development board capture analyze finger images. severity is determined a custom algorithm based on Lovibond angle theory, categorizing condition into normal, mild, moderate, severe. was evaluated 1768 images achieved cloud-based processing capabilities. Results: demonstrated high accuracy (98.34%) in precision (98.22%), sensitivity (99.48%), specificity (98.22%). Cloud-based slightly lower but robust results, 96.38%. average time 0.15 s per image, showcasing its potential. Conclusions: provides scalable cost-effective solution enabling timely intervention lung Its capabilities make it suitable both clinical home-based health monitoring.

Язык: Английский

Процитировано

1