Machine Learning-driven Optimization of Water Quality Index: A Synergistic ENTROPY-CRITIC Approach Using Spatio-Temporal Data DOI
Imran Khan,

Rashid Umar

Earth Systems and Environment, Год журнала: 2024, Номер 8(4), С. 1453 - 1475

Опубликована: Окт. 24, 2024

Язык: Английский

Interpretable prediction, classification and regulation of water quality: A case study of Poyang Lake, China DOI
Zhiyuan Yao, Zhaocai Wang,

Jinghan Huang

и другие.

The Science of The Total Environment, Год журнала: 2024, Номер 951, С. 175407 - 175407

Опубликована: Авг. 9, 2024

Язык: Английский

Процитировано

24

A stacking ANN ensemble model of ML models for stream water quality prediction of Godavari River Basin, India DOI Creative Commons
Nagalapalli Satish, Jagadeesh Anmala,

K. Rajitha

и другие.

Ecological Informatics, Год журнала: 2024, Номер 80, С. 102500 - 102500

Опубликована: Янв. 28, 2024

The importance of water quality models has increased as their inputs are critical to the development risk assessment framework for environmental management and monitoring rivers. However, with advent a plethora recent advances in ML algorithms better predictions possible. This study proposes causal effect model by considering climatological such temperature precipitation along geospatial information related agricultural land use factor (ALUF), forest (FLUF), grassland usage (GLUF), shrub (SLUF), urban (ULUF). All these factors included input data, whereas four Stream Water Quality parameters (SWQPs) Electrical Conductivity (EC), Biochemical Oxygen Demand (BOD), Nitrate, Dissolved (DO) from 2019 2021 taken outputs predict Godavari River Basin quality. In preliminary investigation, out SWQPs, nitrate's coefficient variation (CV) is high, revealing close association climate practices across sampling stations. authors' earlier study, using single-layer Feed-Forward Neural Network (FFNN) showed improved performance predicting cause linked metrics. To achieve prediction, stacked ANN meta-model nine conventional machine learning (ML) models, including Extreme Gradient Boosting (XGB), Extra Trees (ET), Bagging (BG), Random Forest (RF), AdaBoost or Adaptive (ADB), Decision Tree (DT), Highest (HGB), Light Method (LGBM), (GB), were compared this study. According study's findings, outperformed stand-alone FFNN same dataset superior predictive capabilities terms accuracy forecasting variable interest. For instance, during testing, determination (R2) (BOD) 0.72 0.87. Furthermore, Artificial (ANN) meta that was reinforced (ET) base performed than individual (from R2 = 0.87 0.91 BOD testing). By new framework, effort hyperparameter tuning can be minimized.

Язык: Английский

Процитировано

18

Metaheuristic approaches for prediction of water quality indices with relief algorithm-based feature selection DOI
Nand Lal Kushwaha, Jitendra Rajput, Truptimayee Suna

и другие.

Ecological Informatics, Год журнала: 2023, Номер 75, С. 102122 - 102122

Опубликована: Май 9, 2023

Язык: Английский

Процитировано

31

Water Quality Index Assessment of River Ganga at Haridwar Stretch Using Multivariate Statistical Technique DOI
Abdul Gani, Shray Pathak, Athar Hussain

и другие.

Molecular Biotechnology, Год журнала: 2023, Номер unknown

Опубликована: Сен. 20, 2023

Язык: Английский

Процитировано

25

Sensitivity analysis-driven machine learning approach for groundwater quality prediction: Insights from integrating ENTROPY and CRITIC methods DOI
Imran Khan, Md. Ayaz

Groundwater for Sustainable Development, Год журнала: 2024, Номер 26, С. 101309 - 101309

Опубликована: Авг. 1, 2024

Язык: Английский

Процитировано

9

Geochemical and isotopic studies of the Douda-Damerjogue aquifer (Republic of Djibouti): Origin of high nitrate and fluoride, spatial distribution, associated health risk assessment and prediction of water quality using machine learning DOI
M.O. Awaleh, Tiziano Boschetti,

Christelle Marlin

и другие.

The Science of The Total Environment, Год журнала: 2025, Номер 967, С. 178789 - 178789

Опубликована: Фев. 14, 2025

Язык: Английский

Процитировано

1

Applying the water quality indices, geographical information system, and advanced decision-making techniques to assess the suitability of surface water for drinking purposes in Brahmani River Basin (BRB), Odisha DOI
Abhijeet Das

Environmental Science and Pollution Research, Год журнала: 2025, Номер unknown

Опубликована: Март 31, 2025

Язык: Английский

Процитировано

1

Research on a multiparameter water quality prediction method based on a hybrid model DOI
Zhiqiang Zheng, Hao Ding, Zhi Weng

и другие.

Ecological Informatics, Год журнала: 2023, Номер 76, С. 102125 - 102125

Опубликована: Май 16, 2023

Язык: Английский

Процитировано

16

Data-driven reference evapotranspiration (ET0) estimation: a comparative study of regression and machine learning techniques DOI
Jitendra Rajput, Man Singh,

Khajanchi Lal

и другие.

Environment Development and Sustainability, Год журнала: 2023, Номер 26(5), С. 12679 - 12706

Опубликована: Окт. 13, 2023

Язык: Английский

Процитировано

13

Enhancing the prediction of irrigation demand for open field vegetable crops in Germany through neural networks, transfer learning, and ensemble models DOI Creative Commons
Samantha Rubo, Jana Zinkernagel

Agricultural Water Management, Год журнала: 2025, Номер 312, С. 109402 - 109402

Опубликована: Март 18, 2025

Язык: Английский

Процитировано

0