Earth Systems and Environment, Год журнала: 2024, Номер 8(4), С. 1453 - 1475
Опубликована: Окт. 24, 2024
Язык: Английский
Earth Systems and Environment, Год журнала: 2024, Номер 8(4), С. 1453 - 1475
Опубликована: Окт. 24, 2024
Язык: Английский
The Science of The Total Environment, Год журнала: 2024, Номер 951, С. 175407 - 175407
Опубликована: Авг. 9, 2024
Язык: Английский
Процитировано
24Ecological Informatics, Год журнала: 2024, Номер 80, С. 102500 - 102500
Опубликована: Янв. 28, 2024
The importance of water quality models has increased as their inputs are critical to the development risk assessment framework for environmental management and monitoring rivers. However, with advent a plethora recent advances in ML algorithms better predictions possible. This study proposes causal effect model by considering climatological such temperature precipitation along geospatial information related agricultural land use factor (ALUF), forest (FLUF), grassland usage (GLUF), shrub (SLUF), urban (ULUF). All these factors included input data, whereas four Stream Water Quality parameters (SWQPs) Electrical Conductivity (EC), Biochemical Oxygen Demand (BOD), Nitrate, Dissolved (DO) from 2019 2021 taken outputs predict Godavari River Basin quality. In preliminary investigation, out SWQPs, nitrate's coefficient variation (CV) is high, revealing close association climate practices across sampling stations. authors' earlier study, using single-layer Feed-Forward Neural Network (FFNN) showed improved performance predicting cause linked metrics. To achieve prediction, stacked ANN meta-model nine conventional machine learning (ML) models, including Extreme Gradient Boosting (XGB), Extra Trees (ET), Bagging (BG), Random Forest (RF), AdaBoost or Adaptive (ADB), Decision Tree (DT), Highest (HGB), Light Method (LGBM), (GB), were compared this study. According study's findings, outperformed stand-alone FFNN same dataset superior predictive capabilities terms accuracy forecasting variable interest. For instance, during testing, determination (R2) (BOD) 0.72 0.87. Furthermore, Artificial (ANN) meta that was reinforced (ET) base performed than individual (from R2 = 0.87 0.91 BOD testing). By new framework, effort hyperparameter tuning can be minimized.
Язык: Английский
Процитировано
18Ecological Informatics, Год журнала: 2023, Номер 75, С. 102122 - 102122
Опубликована: Май 9, 2023
Язык: Английский
Процитировано
31Molecular Biotechnology, Год журнала: 2023, Номер unknown
Опубликована: Сен. 20, 2023
Язык: Английский
Процитировано
25Groundwater for Sustainable Development, Год журнала: 2024, Номер 26, С. 101309 - 101309
Опубликована: Авг. 1, 2024
Язык: Английский
Процитировано
9The Science of The Total Environment, Год журнала: 2025, Номер 967, С. 178789 - 178789
Опубликована: Фев. 14, 2025
Язык: Английский
Процитировано
1Environmental Science and Pollution Research, Год журнала: 2025, Номер unknown
Опубликована: Март 31, 2025
Язык: Английский
Процитировано
1Ecological Informatics, Год журнала: 2023, Номер 76, С. 102125 - 102125
Опубликована: Май 16, 2023
Язык: Английский
Процитировано
16Environment Development and Sustainability, Год журнала: 2023, Номер 26(5), С. 12679 - 12706
Опубликована: Окт. 13, 2023
Язык: Английский
Процитировано
13Agricultural Water Management, Год журнала: 2025, Номер 312, С. 109402 - 109402
Опубликована: Март 18, 2025
Язык: Английский
Процитировано
0