Geomorphology, Год журнала: 2023, Номер 442, С. 108914 - 108914
Опубликована: Сен. 18, 2023
Язык: Английский
Geomorphology, Год журнала: 2023, Номер 442, С. 108914 - 108914
Опубликована: Сен. 18, 2023
Язык: Английский
Ecological Informatics, Год журнала: 2024, Номер 80, С. 102488 - 102488
Опубликована: Янв. 20, 2024
Язык: Английский
Процитировано
19Remote Sensing, Год журнала: 2024, Номер 16(7), С. 1124 - 1124
Опубликована: Март 22, 2024
The identification of wetland vegetation is essential for environmental protection and management as well monitoring wetlands’ health assessing ecosystem services. However, some limitations on classification may be related to remote sensing technology, confusion between plant species, challenges inadequate data accuracy. In this paper, in the Yancheng Coastal Wetlands studied evaluated from Sentinel-2 images based a random forest algorithm. Based consistent time series observations, characteristic patterns were better captured. Firstly, spectral features, indices, phenological characteristics extracted images, products obtained by constructing dense using dataset Google Earth Engine (GEE). Then, machine learning algorithm obtained, with an overall accuracy 95.64% kappa coefficient 0.94. Four indicators (POP, SOS, NDVIre, B12) main contributors importance weight analysis all features. Comparative experiments conducted different results show that method proposed paper has classification.
Язык: Английский
Процитировано
17Geoderma, Год журнала: 2025, Номер 456, С. 117257 - 117257
Опубликована: Март 15, 2025
Язык: Английский
Процитировано
2Ecological Informatics, Год журнала: 2023, Номер 78, С. 102333 - 102333
Опубликована: Окт. 11, 2023
Sustainable natural resources management relies on effective and timely assessment of conservation land practices. Using satellite imagery for Earth observation has become essential monitoring cover/land use (LCLU) changes identifying critical areas conserving biodiversity. Remote Sensing (RS) datasets are often quite large require tremendous computing power to process. The emergence cloud-based techniques presents a powerful avenue overcome limitations by allowing machine-learning algorithms process analyze RS the cloud. Our study aimed classify LCLU Talassemtane National Park (TNP) using Deep Neural Network (DNN) model incorporating five spectral indices differentiate six classes Sentinel-2 imagery. Optimization DNN was conducted comparative analysis three optimization algorithms: Random Search, Hyperband, Bayesian optimization. Results indicated that improved classification between with similar reflectance. Hyperband method had best performance, improving accuracy 12.5% achieving an overall 94.5% kappa coefficient 93.4%. dropout regularization prevented overfitting mitigated over-activation hidden nodes. initial results show machine learning (ML) applications can be tools management.
Язык: Английский
Процитировано
19Ecological Informatics, Год журнала: 2025, Номер unknown, С. 103030 - 103030
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
1Applied Computing and Geosciences, Год журнала: 2024, Номер 24, С. 100189 - 100189
Опубликована: Сен. 4, 2024
Язык: Английский
Процитировано
6Earth Science Informatics, Год журнала: 2024, Номер 17(5), С. 4707 - 4738
Опубликована: Июль 22, 2024
Язык: Английский
Процитировано
3Environmental Earth Sciences, Год журнала: 2025, Номер 84(9)
Опубликована: Апрель 30, 2025
Язык: Английский
Процитировано
0Ecological Informatics, Год журнала: 2025, Номер unknown, С. 103186 - 103186
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0Earth Science Informatics, Год журнала: 2025, Номер 18(2)
Опубликована: Май 24, 2025
Язык: Английский
Процитировано
0