Geo-Marine Letters, Год журнала: 2024, Номер 45(1)
Опубликована: Дек. 23, 2024
Язык: Английский
Geo-Marine Letters, Год журнала: 2024, Номер 45(1)
Опубликована: Дек. 23, 2024
Язык: Английский
Urban Climate, Год журнала: 2024, Номер 55, С. 101962 - 101962
Опубликована: Май 1, 2024
Язык: Английский
Процитировано
45Alexandria Engineering Journal, Год журнала: 2024, Номер 97, С. 100 - 113
Опубликована: Апрель 16, 2024
Язык: Английский
Процитировано
13Forum Geografi, Год журнала: 2023, Номер 37(2)
Опубликована: Дек. 29, 2023
The land-conversion of rice fields can reduce production and negatively impact food security. Consequently, monitoring is essential to prevent the loss productive agricultural land. This study uses a combination Sentinel-2 MSI, Sentinel-1 SAR, along with SRTM (elevation slope data) monitor land-conversion. NDVI, NDBI NDWI indices are transformed from annual median composite MSI images used identify different another object. A monthly SAR data cropping patterns in inundation phase. classification performed by using Random Forest machine learning algorithm Google Earth Engine (GEE) platform. run 1000 trees, 70:30 ratio training testing sample features extracted visual interpretation high resolution imagery. In this study, effective computing amount multi-temporal multi-sensory map rice-field land conversion an accuracy rate 96.16% (2021) 95.95% (2017) for mapping paddy fields. From multitemporal field maps 2017—2021, 826.66 hectares rice-fields non-rice was identified. Based on spatial distribution, higher at area near roads, built Yogyakarta International Airport. Therefore, it important assess ensure that National Strategic Projects managed due regard environmental impacts
Язык: Английский
Процитировано
20Ecological Informatics, Год журнала: 2024, Номер 81, С. 102652 - 102652
Опубликована: Май 26, 2024
Язык: Английский
Процитировано
9Frontiers in Environmental Science, Год журнала: 2024, Номер 12
Опубликована: Май 28, 2024
Classifying land use and cover (LULC) is essential for various environmental monitoring geospatial analysis applications. This research focuses on classification in District Sukkur, Pakistan, employing the comparison between machine deep learning models. Three satellite indices, namely, NDVI, MNDWI, NDBI, were derived from Landsat-8 data utilized to classify four primary categories: Built-up Area, Water Bodies, Barren Land, Vegetation. The main objective of this study evaluate compare effectiveness models including Random Forest achieved an overall accuracy 91.3% a Kappa coefficient 0.90. It accurately classified 2.7% area as 1.9% 54.8% 40.4% While slightly less accurate, Decision Tree model provided reliable classifications. Deep showed significant accuracy, Convolutional Neural Networks (CNN) Recurrent (RNN). CNN impressive 97.3%, excelling classifying Bodies with User Producer Accuracy exceeding 99%. RNN model, 96.2%, demonstrated strong performance categorizing These findings offer valuable insights into potential applications perfect classifications, implications management analysis. rigorous validation comparative these contribute advancing remote sensing techniques their utilization tasks. presents contribution field underscores importance precise context sustainable conservation.
Язык: Английский
Процитировано
8Ecological Informatics, Год журнала: 2024, Номер 81, С. 102594 - 102594
Опубликована: Апрель 8, 2024
Classification of wetland plant species (PlatSpe) and surface objects (SurfObj) in remote sensing images faces significant challenges due to the high diversity PlatSpe fragmented nature SurfObj. Unmanned aerial vehicle (UAV) satellite are primary data sources for classification However, there is still insufficient research on effect various spatial resolutions results. This study essentially focuses Huixian Wetland Guilin, Guangxi, China through utilizing UAV with varying as sources. To this end, MRS_DeepLabV3+ model constructed based multi-resolution segmentation DeepLabV3+, SurfObj appropriately classified model. The obtained results reveal that: (1) optimal scale parameter (SP) capable achieving higher accuracy compared DeepLabV3+. SPs both gradually lessen decreasing resolution, require larger images. (2) In image models, OA kappa exhibit a trend reduction resolution. (3) overall accuracies models superior resolution intervals 2 16 m. investigation can be regarded valuable reference selecting classification.
Язык: Английский
Процитировано
7Geocarto International, Год журнала: 2025, Номер 40(1)
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
1Ecological Informatics, Год журнала: 2025, Номер unknown, С. 103126 - 103126
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
1Remote Sensing, Год журнала: 2024, Номер 16(14), С. 2623 - 2623
Опубликована: Июль 18, 2024
This study evaluates land cover classification accuracy through adjustments to the deep learning model (DLM) training process, including variations in loss function, rate scheduler, and optimizer, along with diverse input dataset compositions. DLM datasets were created by integrating surface reflectance (SR) spectral data from satellite imagery textural information derived gray-level co-occurrence matrix, yielding four distinct datasets. The U-Net served as baseline, models A B configured adjusting parameters. Eight classifications generated two conditions. Model B, utilizing a comprising spectral, textural, terrain information, achieved highest overall of 90.3% kappa coefficient 0.78. Comparing different compositions, incorporating alongside SR significantly enhanced accuracy. Furthermore, using combination multiple functions or dynamically effectively mitigated overfitting issues, enhancing compared single function.
Язык: Английский
Процитировано
3Water Conservation Science and Engineering, Год журнала: 2025, Номер 10(1)
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0