
Ecological Informatics, Год журнала: 2024, Номер unknown, С. 102964 - 102964
Опубликована: Дек. 1, 2024
Язык: Английский
Ecological Informatics, Год журнала: 2024, Номер unknown, С. 102964 - 102964
Опубликована: Дек. 1, 2024
Язык: Английский
Ecological Informatics, Год журнала: 2025, Номер 86, С. 103007 - 103007
Опубликована: Янв. 11, 2025
Язык: Английский
Процитировано
1Applied Sciences, Год журнала: 2024, Номер 14(8), С. 3531 - 3531
Опубликована: Апрель 22, 2024
This article explores the impact of automation on environmental sensing, focusing advanced technologies that revolutionize data collection analysis and monitoring. The International Union Pure Applied Chemistry (IUPAC) defines as integrating hardware software components into modern analytical systems. Advancements in electronics, computer science, robotics drive evolution automated sensing systems, overcoming traditional limitations manual collection. Environmental sensor networks (ESNs) address challenges weather constraints cost considerations, providing high-quality time-series data, although issues interoperability, calibration, communication, longevity persist. Unmanned Aerial Systems (UASs), particularly unmanned aerial vehicles (UAVs), play an important role monitoring due to their versatility cost-effectiveness. Despite regulatory compliance technical limitations, UAVs offer detailed spatial temporal information. Pollution faces related high costs maintenance requirements, prompting exploration cost-efficient alternatives. Smart agriculture encounters hurdle integration, device durability adverse conditions, cybersecurity threats, necessitating privacy-preserving techniques federated learning approaches. Financial barriers, including ongoing maintenance, impede widespread adoption smart technology agriculture. Integrating robotics, notably underwater vehicles, proves indispensable various applications, accurate challenging conditions. review details significant transfer edge computing, which are integral wireless frameworks. These advancements aid underscoring necessity for research innovation enhance solutions. Some state-of-the-art frameworks datasets analyzed provide a comprehensive basic steps involved applications.
Язык: Английский
Процитировано
4Ecological Informatics, Год журнала: 2024, Номер 82, С. 102750 - 102750
Опубликована: Авг. 3, 2024
Sustainable development in cities requires advanced technologies for monitoring and estimating air pollution emissions, which directly affect the health of local inhabitants residents neighborhoods. For this, low-cost sensors information are increasingly used to provide accurate quality forecasts. They are, however, subject data constraints. This paper presents new techniques accurate, reliable forecasting at various scales using from IoT-enabled along with state-run air-quality stations. Here, we develop an extended deep-learning model based on neural networks algorithms optimization hyperparameters network dropout rates. These can yield a significant improvement over 31% prediction accuracy while maintaining coverage approximately 80% air-particle levels 24-h period. The advantages effectiveness our validated verified two real-world scenarios, suburban construction site civil infrastructure project. Comparison analysis is conducted indicate outperformance proposed method recent probabilistic time series estimation regular days extreme events.
Язык: Английский
Процитировано
4Computers and Electronics in Agriculture, Год журнала: 2025, Номер 234, С. 110277 - 110277
Опубликована: Март 17, 2025
Язык: Английский
Процитировано
0Ecological Informatics, Год журнала: 2024, Номер 84, С. 102902 - 102902
Опубликована: Ноя. 17, 2024
Язык: Английский
Процитировано
0Lecture notes in computer science, Год журнала: 2024, Номер unknown, С. 192 - 203
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
0Ecological Informatics, Год журнала: 2024, Номер unknown, С. 102964 - 102964
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
0