
Ecological Informatics, Год журнала: 2024, Номер unknown, С. 102957 - 102957
Опубликована: Дек. 1, 2024
Язык: Английский
Ecological Informatics, Год журнала: 2024, Номер unknown, С. 102957 - 102957
Опубликована: Дек. 1, 2024
Язык: Английский
Ecological Informatics, Год журнала: 2024, Номер 82, С. 102769 - 102769
Опубликована: Авг. 11, 2024
Desertification is one of the most significant environmental and social challenges globally. Monitoring desertification dynamics quantitatively identifying contributions its driving factors are crucial for land restoration sustainable development. This study develops a standardized methodological framework that combines with mechanisms at pixel level, applied to northern China from 2000 2020. Using multisource data employing Time Series Segmentation Residual Trend analysis (TSS-RESTREND) method alongside geographical detector, we assessed reversion, expansion, abrupt change processes, along impacts interactions natural human were assessed. Over past two decades, proportion desertified decreased by 5.60%. Notably, 32.88% area experienced while only 5.86% underwent expansion. Abrupt changes in both reversed expanding areas observed, primarily central western regions, these concentrated periods 2009–2011 2014–2016. The various different sub-regions exhibited spatial heterogeneity. Increased precipitation, temperature, evapotranspiration contributed reversion area, wind speed influenced eastern area. Additionally, population density afforestation activities also promoted reversion. In contrast, precipitation increased temperature expansion areas, respectively, exacerbating this process. Overall, between enhanced. Future control ecological engineering planning should focus on coupling effects relevant vegetation changes.
Язык: Английский
Процитировано
10Ecological Informatics, Год журнала: 2025, Номер 86, С. 103007 - 103007
Опубликована: Янв. 11, 2025
Язык: Английский
Процитировано
2Ecological Informatics, Год журнала: 2025, Номер unknown, С. 103014 - 103014
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
1Ecological Informatics, Год журнала: 2024, Номер 82, С. 102777 - 102777
Опубликована: Авг. 23, 2024
Soil respiration (Rs), the second-largest flux in global carbon cycle, is a crucial but uncertain component. To improve understanding of Rs, we constructed single models, and specific models classified by climate type, land cover year data record, elevation range using random forest algorithm to predict Rs values explore associated uncertainty models. The results showed similar overall predictive performance for with an R-squared value greater than 0.63; however, significant differences were observed compared estimate (23 Pg C). All estimated larger model, mainly owing imbalances sample on which prediction based. One exception this result estimates smaller 2020 (95.1 Overall, model closer those obtained temperate zones training distribution, resulted other classification-specific Prediction observations before 2000 tend underestimate Rs. However, use proved helpful addressing persistent temporal spatial sampling. Expanding coverage records both temporally spatially updating database promptly would estimation accuracy while enhancing budget feedback soil regard warming.
Язык: Английский
Процитировано
4Forests, Год журнала: 2025, Номер 16(1), С. 95 - 95
Опубликована: Янв. 8, 2025
Natural broadleaf forests (NBFs) are the most abundant zonal vegetation type in subtropical regions. Understanding mechanisms influencing stand productivity NBFs is important for developing “nature-based” solutions climate change mitigation. However, minimal research has captured effects of nonlinearities and feature interactions that often have nonlinear impacts on factors. To address this gap, we used continuous forest inventory data, a machine learning model was constructed. Subsequently, through leveraging interpretable framework SHapley Additive explanation (SHAP) partial dependence plot, determined global local explanations factors productivity. Our findings indicate following: (1) The Autogluon performed strongest based R2, RMSE, rRMSE metrics. (2) basal area (BA), neighborhood comparison diameter at breast height (NC), age (AGE) were key Stand increased with increasing BA decreased NC AGE. maintained above 15 m2ha−1 below 0.45, which represent favorable conditions to maintain optimal growth. (3) SHAP interaction values calculated determine five major study provides reference sustainable management NBFs, thereby highlighting role mitigating change.
Язык: Английский
Процитировано
0Cluster Computing, Год журнала: 2025, Номер 28(3)
Опубликована: Янв. 21, 2025
Язык: Английский
Процитировано
0Ecological Informatics, Год журнала: 2025, Номер unknown, С. 103203 - 103203
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0Ecological Informatics, Год журнала: 2024, Номер unknown, С. 102951 - 102951
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
1Ecological Informatics, Год журнала: 2024, Номер unknown, С. 102957 - 102957
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
1