
Ecological Informatics, Год журнала: 2024, Номер 84, С. 102899 - 102899
Опубликована: Ноя. 17, 2024
Язык: Английский
Ecological Informatics, Год журнала: 2024, Номер 84, С. 102899 - 102899
Опубликована: Ноя. 17, 2024
Язык: Английский
Ecological Informatics, Год журнала: 2024, Номер 82, С. 102683 - 102683
Опубликована: Июнь 12, 2024
Poisonous plants are the third largest category of poisons known globally, which pose a risk poisoning and death to humans. Currently, identification medicinal poisonous is done by humans using experimental methods, not accurate associated with many errors, also use laboratory methods requires experts this method very costly time-consuming. Therefore, distinguishing between important emerging, non-destructive, fast such as computer vision artificial intelligence. In study, we propose robust generalized model spatial attention (SA) channel (CA) modules for classification different plants. A dataset containing 900 confirmed images three plant classes (oregano, weed) was used. The mechanisms enhance efficiency deep learning (DL) networks allowing them precisely focus on all relevant input elements. order performance proposed model, CA implemented based four pooling operations including global average pooling-based (GAP-CA), mixed (Mixed-CA), gated (Gated-CA), tree (Tree-CA) operations. results showed that DL Tree-CA had promising outperformed other state-of-the-art models, achieving values 99.63%, 99.38%, 99.52%, 99.74%, 99.42%, accuracy, precision, recall, specificity, F1-score, respectively. findings support our model's success in identifying from similar Recent advancements computer-based technologies intelligence enable automatic detection plants, revolutionizing traditional methods.
Язык: Английский
Процитировано
10Ecological Informatics, Год журнала: 2024, Номер unknown, С. 102932 - 102932
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
3Ecological Informatics, Год журнала: 2025, Номер unknown, С. 103029 - 103029
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Procedia Computer Science, Год журнала: 2025, Номер 258, С. 765 - 774
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Big Data and Cognitive Computing, Год журнала: 2024, Номер 8(12), С. 176 - 176
Опубликована: Дек. 1, 2024
In computer vision, recognizing plant pictures has emerged as a multidisciplinary area of interest. the last several years, much research been conducted to determine type in each image automatically. The challenges identifying medicinal plants are due changes effects light, stance, and orientation. Further, it is difficult identify factors like variations leaf shape with age changing color response varying weather conditions. proposed work uses machine learning techniques deep neural networks choose appropriate features if or non-medicinal plant. This study presents network design based on PSR-LeafNet (PSR-LN). single that combines P-Net, S-Net, R-Net, all intended for feature extraction using minimum redundancy maximum relevance (MRMR) approach. PSR-LN helps obtain features, venation leaf, textural features. A support vector (SVM) applied output achieved from PSR network, which classify name model named PSR-LN-SVM. advantage designed suits more considerable dataset processing provides better results than traditional models. methodology utilized achieves an accuracy 97.12% MalayaKew dataset, 98.10% IMP 95.88% Flavia dataset. models surpass existing models, having improvement accuracy. These outcomes demonstrate suggested method successful accurately leaves plants, paving way advanced taxonomy medicine.
Язык: Английский
Процитировано
2Опубликована: Июль 27, 2024
Язык: Английский
Процитировано
0Ecological Informatics, Год журнала: 2024, Номер 84, С. 102899 - 102899
Опубликована: Ноя. 17, 2024
Язык: Английский
Процитировано
0