A Study on Bird Calls Recognition Method for Overhead Lines Integrating CNN Models DOI
Meiyan Pan,

Runyu Xiao,

Jiaqi Cui

и другие.

Опубликована: Ноя. 8, 2024

Язык: Английский

LRM-MVSR: A lightweight birdsong recognition model based on multi-view feature extraction enhancement and spatial relationship capture DOI
Jing Wan,

Zhongxiang Lin,

Zhiqi Zhu

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 126735 - 126735

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

A novel approach for bird sound classification with cross correlation by denoising with complementary ensemble empirical mode decomposition using B-spline and LSTM features DOI
Mehmet Bilal Er,

Umut Kuran,

Nagehan İlhan

и другие.

Applied Acoustics, Год журнала: 2025, Номер 233, С. 110601 - 110601

Опубликована: Фев. 19, 2025

Язык: Английский

Процитировано

0

Environmental sound recognition on embedded devices using deep learning: a review DOI Creative Commons

Pau Gairí,

Tomàs Pallejà, Marcel Tresánchez

и другие.

Artificial Intelligence Review, Год журнала: 2025, Номер 58(6)

Опубликована: Март 15, 2025

Язык: Английский

Процитировано

0

A Comprehensive Review on Advancements and Challenges in Audio Classification Through Deep Learning DOI
Gunjan Verma, Honey Gocher, Sweety Verma

и другие.

Advances in computational intelligence and robotics book series, Год журнала: 2025, Номер unknown, С. 137 - 160

Опубликована: Март 21, 2025

Deep learning-based audio classification has transformed the industry with improved speech recognition, genre identification in music, and ambient sound detection. The article explores various approaches, including model architectures, evaluation metrics, preprocessing techniques. Traditional methods are compared to deep learning techniques, which have enhanced performance. Spectrograms, Mel-Frequency Cepstral Coefficients, Short-Time Fourier Transform discussed as study also evaluates hybrid training methods, data augmentation, transfer for better outcomes. paper emphasises importance of interpretability, stable datasets, real-time processing overcoming challenges classification. It is expected guide future research advancements this field.

Язык: Английский

Процитировано

0

Artificial Intelligence in Aquatic Biodiversity Research: A PRISMA-Based Systematic Review DOI Creative Commons
Tymoteusz Miller, Grzegorz Michoński, Irmina Durlik

и другие.

Biology, Год журнала: 2025, Номер 14(5), С. 520 - 520

Опубликована: Май 8, 2025

Freshwater ecosystems are increasingly threatened by climate change and anthropogenic activities, necessitating innovative scalable monitoring solutions. Artificial intelligence (AI) has emerged as a transformative tool in aquatic biodiversity research, enabling automated species identification, predictive habitat modeling, conservation planning. This systematic review follows the PRISMA framework to analyze AI applications freshwater studies. Using structured literature search across Scopus, Web of Science, Google Scholar, we identified 312 relevant studies published between 2010 2024. categorizes into assessment, ecological risk evaluation, strategies. A bias assessment was conducted using QUADAS-2 RoB 2 frameworks, highlighting methodological challenges, such measurement inconsistencies model validation. The citation trends demonstrate exponential growth AI-driven with leading contributions from China, United States, India. Despite growing use this field, also reveals several persistent including limited data availability, regional imbalances, concerns related generalizability transparency. Our findings underscore AI’s potential revolutionizing but emphasize need for standardized methodologies, improved integration, interdisciplinary collaboration enhance insights efforts.

Язык: Английский

Процитировано

0

Advanced montane bird monitoring using self-supervised learning and transformer on passive acoustic data DOI Creative Commons
Yucheng Wei, Wei‐Lun Chen, Mao‐Ning Tuanmu

и другие.

Ecological Informatics, Год журнала: 2024, Номер unknown, С. 102927 - 102927

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

1

A Study on Bird Calls Recognition Method for Overhead Lines Integrating CNN Models DOI
Meiyan Pan,

Runyu Xiao,

Jiaqi Cui

и другие.

Опубликована: Ноя. 8, 2024

Язык: Английский

Процитировано

0