Опубликована: Ноя. 8, 2024
Язык: Английский
Опубликована: Ноя. 8, 2024
Язык: Английский
Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 126735 - 126735
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Applied Acoustics, Год журнала: 2025, Номер 233, С. 110601 - 110601
Опубликована: Фев. 19, 2025
Язык: Английский
Процитировано
0Artificial Intelligence Review, Год журнала: 2025, Номер 58(6)
Опубликована: Март 15, 2025
Язык: Английский
Процитировано
0Advances in computational intelligence and robotics book series, Год журнала: 2025, Номер unknown, С. 137 - 160
Опубликована: Март 21, 2025
Deep learning-based audio classification has transformed the industry with improved speech recognition, genre identification in music, and ambient sound detection. The article explores various approaches, including model architectures, evaluation metrics, preprocessing techniques. Traditional methods are compared to deep learning techniques, which have enhanced performance. Spectrograms, Mel-Frequency Cepstral Coefficients, Short-Time Fourier Transform discussed as study also evaluates hybrid training methods, data augmentation, transfer for better outcomes. paper emphasises importance of interpretability, stable datasets, real-time processing overcoming challenges classification. It is expected guide future research advancements this field.
Язык: Английский
Процитировано
0Biology, Год журнала: 2025, Номер 14(5), С. 520 - 520
Опубликована: Май 8, 2025
Freshwater ecosystems are increasingly threatened by climate change and anthropogenic activities, necessitating innovative scalable monitoring solutions. Artificial intelligence (AI) has emerged as a transformative tool in aquatic biodiversity research, enabling automated species identification, predictive habitat modeling, conservation planning. This systematic review follows the PRISMA framework to analyze AI applications freshwater studies. Using structured literature search across Scopus, Web of Science, Google Scholar, we identified 312 relevant studies published between 2010 2024. categorizes into assessment, ecological risk evaluation, strategies. A bias assessment was conducted using QUADAS-2 RoB 2 frameworks, highlighting methodological challenges, such measurement inconsistencies model validation. The citation trends demonstrate exponential growth AI-driven with leading contributions from China, United States, India. Despite growing use this field, also reveals several persistent including limited data availability, regional imbalances, concerns related generalizability transparency. Our findings underscore AI’s potential revolutionizing but emphasize need for standardized methodologies, improved integration, interdisciplinary collaboration enhance insights efforts.
Язык: Английский
Процитировано
0Ecological Informatics, Год журнала: 2024, Номер unknown, С. 102927 - 102927
Опубликована: Ноя. 1, 2024
Язык: Английский
Процитировано
1Опубликована: Ноя. 8, 2024
Язык: Английский
Процитировано
0