Enhanced Yolov8 network with Extended Kalman Filter for wildlife detection and tracking in complex environments
Ecological Informatics,
Год журнала:
2024,
Номер
unknown, С. 102856 - 102856
Опубликована: Окт. 1, 2024
Язык: Английский
A multi-target tracking method for UAV monitoring wildlife in Qinghai
PLoS ONE,
Год журнала:
2025,
Номер
20(4), С. e0317286 - e0317286
Опубликована: Апрель 11, 2025
The
Procapra
przewalskii,
plays
a
vital
role
in
sustaining
the
ecological
balance
within
its
habitat,
yet
it
faces
significant
threats
from
environmental
degradation
and
illegal
poaching
activities.
In
response
to
this
urgent
conservation
need,
article
proposes
multi-object
tracking
(MOT)
method
for
unmanned
aerial
vehicle
(UAV).
Initially,
approach
utilizes
modified
YOLOv7
network,
which
incorporates
Group-Selective
Convolution
(GSConv)
Neck
component,
effectively
enhancing
network’s
ability
preserve
detailed
information
while
simultaneously
reducing
computational
load.
Subsequently,
Content-Aware
ReAssembly
of
Features
(CARAFE),
an
innovative
feature
upscaling
method,
replaces
conventional
nearest
neighbor
interpolation
minimize
loss
critical
data
during
image
processing.
phase,
Deep
SORT
algorithm
is
expanded
with
proprietary
UAV
camera
motion
compensation
(CMC)
module
that
eliminates
impact
jitters.
Moreover,
system
has
incorporated
confidence
optimization
strategy
(COS)
enhances
performance
especially
when
individuals
are
partially
or
fully
obscured.
been
tested
on
przewalskii
shown
be
effective.
results
show
gains
metrics
where
achieved
improvements
7.0%
MOTA,
3.7%
MOTP,
5.8%
IDF1
score
compared
traditional
model.
Improved
methods
can
alleviate
occlusion
rapid
movement
tracking,
thereby
more
accurately
monitoring
status
each
protecting
it.
Also,
efficiency
multi-target
through
use
sufficient
operational
demands
UAV-based
wildlife
monitoring,
thus
being
reliable
tool
accurate
efficient
desired.
Язык: Английский
DNE-YOLO: A method for apple fruit detection in Diverse Natural Environments
Journal of King Saud University - Computer and Information Sciences,
Год журнала:
2024,
Номер
36(9), С. 102220 - 102220
Опубликована: Окт. 21, 2024
Язык: Английский
Advancing Sika deer detection and distance estimation through comprehensive camera calibration and distortion analysis
Ecological Informatics,
Год журнала:
2025,
Номер
unknown, С. 103064 - 103064
Опубликована: Фев. 1, 2025
Язык: Английский
Field-deployable real-time AI System for chemical warfare agent detection using YOLOv8 and colorimetric sensors
Chemometrics and Intelligent Laboratory Systems,
Год журнала:
2025,
Номер
unknown, С. 105365 - 105365
Опубликована: Март 1, 2025
Язык: Английский
Synergistic enhancement of photoluminescence and advanced deep learning model through YOLOv8x in combined effects of carbon dots and Sr₉Al₆O₁₈:Sm³⁺ phosphors
Optical Materials,
Год журнала:
2024,
Номер
unknown, С. 116455 - 116455
Опубликована: Ноя. 1, 2024
Язык: Английский
Nondestructive detection of surface defects of curved mosaic ceramics based on deep learning
Ceramics International,
Год журнала:
2024,
Номер
unknown
Опубликована: Ноя. 1, 2024
Язык: Английский
Hierarchical deep learning framework for automated marine vegetation and fauna analysis using ROV video data
Ecological Informatics,
Год журнала:
2024,
Номер
unknown, С. 102966 - 102966
Опубликована: Дек. 1, 2024
Язык: Английский
Habitat Distributions and Abundance of Four Wild Herbivores on the Qinghai–Tibetan Plateau: A Review
Land,
Год журнала:
2024,
Номер
14(1), С. 23 - 23
Опубликована: Дек. 26, 2024
Understanding
the
change
in
habitat
distributions
and
abundance
of
wildlife
space
time
is
critical
for
conservation
biodiversity
mitigate
human–wildlife
conflicts
(HWCs).
Tibetan
antelope
or
chiru
(Pantholops
hodgsonii),
gazelle
goa
(Procapra
picticaudata),
wild
ass
kiang
(Equus
kiang),
Wild
yak
(Bos
mutus)
have
been
sympatric
on
Qinghai–Tibetan
plateau
(QTP)
numerous
generations.
However,
reviews
these
four
herbivores
(WHs),
as
well
methods
examining
changes
aspects,
are
still
lacking.
Here,
we
firstly
review
major
WHs
QTP
across
different
periods,
underlying
causes
HWCs.
Furthermore,
critically
compare
three
aspects
methods:
transect
surveys,
machine
learning
(ML),
deep
(DL)
studying
WHs.
The
results
show
that
since
1990s,
exhibited
a
trend
initial
decline
followed
by
recovery,
largely
attributed
to
global
climate
warming
decrease
illegal
hunting.
recent
years,
primary
challenge
has
shifted
from
protection
balancing
human
interests
within
constraints
limited
resources.
In
future,
should
focus
enhancing
ecological
functions
habitats
achieve
harmonious
coexistence
between
humans
nature,
establishing
scientific
compensation
mechanism
conflicts.
order
accurately
calculate
changes,
select
appropriate
models
analyze
based
their
specific
characteristics
environmental
conditions.
Additionally,
with
advancement
large
models,
AI
(artificial
intelligence)
be
utilized
precise
rapid
conservation.
findings
this
study
also
provide
guidance
reference
addressing
issues
related
other
regions
globally.
Язык: Английский