Machine Learning and Digital Innovation for Managing and Monitoring Water Resources DOI
Arash Khosravi,

Maryam Ashkpour

Advances in environmental engineering and green technologies book series, Год журнала: 2024, Номер unknown, С. 241 - 284

Опубликована: Дек. 6, 2024

This chapter aims to explore the transformative potential of artificial intelligence (AI), machine learning (ML) and digital innovations in water resource management monitoring. It discusses various AI techniques tools that enhance controlling, analysis managing resources. These are designed address challenges such as data quality, technologies integration, real-time decision-making. There several case studies chapter, demonstrating successful implementation ML demand prediction, quality monitoring, optimizing irrigation, efficient utilization detecting anomalies systems. The emphasizes need for interdisciplinary collaboration, robust governance, ethical considerations fully realize benefits sustainable management.

Язык: Английский

Innovative approaches to surface water quality management: advancing nitrate (NO3) forecasting with hybrid CNN-LSTM and CNN-GRU techniques DOI

Sina Davoudi,

Kiyoumars Roushangar

Modeling Earth Systems and Environment, Год журнала: 2025, Номер 11(2)

Опубликована: Янв. 20, 2025

Язык: Английский

Процитировано

2

Integrated machine learning-based optimization framework for surface water quality index comparing coastal and non-coastal cases of Guangxi, China DOI
Xizhi Nong,

Fankang He,

Lihua Chen

и другие.

Marine Pollution Bulletin, Год журнала: 2025, Номер 213, С. 117564 - 117564

Опубликована: Фев. 3, 2025

Язык: Английский

Процитировано

2

Drivers analysis and future scenario-based predictions of nutrient loads in key lakes and reservoirs of the Yangtze River Catchment DOI
Ziteng Wang, Fuhong Sun,

Yiwen Sang

и другие.

Journal of Environmental Management, Год журнала: 2025, Номер 374, С. 124078 - 124078

Опубликована: Янв. 11, 2025

Язык: Английский

Процитировано

1

An enhanced combined model for water quality prediction utilizing spatiotemporal features and physical-informed constraints DOI
Jiaming Zhu,

Dai Wan,

Jingyi Shao

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 126937 - 126937

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

1

Data-driven water quality prediction using hybrid machine learning approaches for sustainable development goal 6 DOI
Jana Shafi,

Ramsha Ijaz,

Apeksha Koul

и другие.

Environment Development and Sustainability, Год журнала: 2025, Номер unknown

Опубликована: Фев. 3, 2025

Язык: Английский

Процитировано

0

Water Quality Dynamics in the Zhuxihe River Basin in Hainan Province, China: Insights from Temporal and Spatial Analysis DOI Open Access
Tongchun Qin,

Yongpeng Yang,

Nan Shan

и другие.

Water, Год журнала: 2025, Номер 17(7), С. 923 - 923

Опубликована: Март 22, 2025

The Zhuxihe River has faced significant water quality challenges in recent years. Although control measures have been implemented, the pollution levels remain concerning. This paper aims to investigate spatio-temporal variations of through field sampling, chemical testing, and synthetic evaluation. We collected 52 samples both dry wet seasons along main river its tributaries. evaluation, which utilized integrated SFE-FCE method, identified MnO42−, NH3-N, TP, TFe as primary pollutants. In season, MnO42− concentrations ranged from 1.6 mg/L 19.8 mg/L, NH3-N 0.12 2.04 TP varied 0.1 5.61 mg/L. 4.9 13.9 0.27 1.73 0.07 1.31 results indicate are higher show seasonal fluctuations. Spatially, downstream section faces highest levels. study provides insights into dynamics River, offering a scientific foundation for future research management strategies.

Язык: Английский

Процитировано

0

Prediction of Urban Surface Water Quality Scenarios Using Water Quality Index (WQI), Multivariate Techniques, and Machine Learning (ML) Models in Water Resources, in Baitarani River Basin, Odisha: Potential Benefits and Associated Challenges DOI
Abhijeet Das

Earth Systems and Environment, Год журнала: 2025, Номер unknown

Опубликована: Апрель 9, 2025

Язык: Английский

Процитировано

0

Spatial distribution, potential health risks, and sources of groundwater contamination in the semi-arid region DOI

Owais Rabbani,

Wajid Ali,

Ghazanfar A. Khattak

и другие.

Physics and Chemistry of the Earth Parts A/B/C, Год журнала: 2025, Номер unknown, С. 103952 - 103952

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

River total dissolved gas prediction using a hybrid greedy-stepwise feature selection and bidirectional long short-term memory model DOI Creative Commons
Khabat Khosravi, Salim Heddam, Changhyun Jun

и другие.

Ecological Informatics, Год журнала: 2025, Номер unknown, С. 103191 - 103191

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

Advanced hybrid frameworks for water quality index prediction DOI

Mohammad Ehteram,

Somayeh Soltani-Gerdefaramarzi

Ain Shams Engineering Journal, Год журнала: 2025, Номер 16(8), С. 103478 - 103478

Опубликована: Май 13, 2025

Язык: Английский

Процитировано

0