Sustainable Energy Technologies and Assessments, Год журнала: 2022, Номер 55, С. 102895 - 102895
Опубликована: Ноя. 25, 2022
Язык: Английский
Sustainable Energy Technologies and Assessments, Год журнала: 2022, Номер 55, С. 102895 - 102895
Опубликована: Ноя. 25, 2022
Язык: Английский
Thermal Science and Engineering Progress, Год журнала: 2023, Номер 39, С. 101730 - 101730
Опубликована: Фев. 20, 2023
Язык: Английский
Процитировано
95Heliyon, Год журнала: 2022, Номер 8(11), С. e11373 - e11373
Опубликована: Ноя. 1, 2022
In this paper, the thermal conductivity (knf) of cerium oxide/ethylene glycol nanofluid is extracted for different temperatures (T = 25, 30, 35, 40, 45, and 50 °C) volume fraction nanoparticles (φ= 0, 0.25, 0.5, 0.75, 1, 1.5, 2 2.5%) then knf predicted by two methods including Artificial Neural Network (ANN) fitting method. For both methods, results have been presented compared. The experiments showed that with increasing φ temperature, ratio (TCR) increases. It was also observed when are performed at high temperatures, rate increase in much higher than change same amount low temperatures. An ANN 7 neurons has a correlation coefficient very close to 1 proves outputs compatible experimental results. Also, it can be seen could predict behavior more accurately.
Язык: Английский
Процитировано
75Journal of Energy Storage, Год журнала: 2024, Номер 87, С. 111329 - 111329
Опубликована: Март 29, 2024
Язык: Английский
Процитировано
60Thermal Science and Engineering Progress, Год журнала: 2023, Номер 41, С. 101808 - 101808
Опубликована: Март 28, 2023
Язык: Английский
Процитировано
57Energy and Buildings, Год журнала: 2023, Номер 290, С. 113099 - 113099
Опубликована: Апрель 23, 2023
Язык: Английский
Процитировано
55Waste Management, Год журнала: 2023, Номер 157, С. 339 - 347
Опубликована: Янв. 3, 2023
Язык: Английский
Процитировано
50Journal of Energy Storage, Год журнала: 2022, Номер 56, С. 106118 - 106118
Опубликована: Ноя. 18, 2022
Язык: Английский
Процитировано
45Renewable Energy, Год журнала: 2023, Номер 205, С. 222 - 237
Опубликована: Янв. 22, 2023
Язык: Английский
Процитировано
33Biomimetics, Год журнала: 2023, Номер 8(8), С. 574 - 574
Опубликована: Дек. 1, 2023
Evolutionary algorithms are a large class of optimization techniques inspired by the ideas natural selection, and can be employed to address challenging problems. These iteratively evolve populations using crossover, which combines genetic information from two parent solutions, mutation, adds random changes. This iterative process tends produce effective solutions. Inspired this, current study presents results thermal variation on surface wetted wavy fin algorithm in context parameter estimation for artificial neural network models. The physical features convective radiative heat transfer during wet conditions also considered develop model. highly nonlinear governing ordinary differential equation proposed problem is transmuted into dimensionless equation. graphical outcomes aspects profile demonstrated specific non-dimensional variables. primary observation decrease temperature with rise parameters convective-conductive parameters. implemented offers powerful technique that effectively tune network, leading an enhanced predictive accuracy convergence numerically obtained solution.
Язык: Английский
Процитировано
31Symmetry, Год журнала: 2023, Номер 15(8), С. 1601 - 1601
Опубликована: Авг. 18, 2023
The impact of convection and radiation on the thermal distribution wavy porous fin is examined in present study. A hybrid model that combines differential evolution (DE) algorithm with an artificial neural network (ANN) proposed for predicting heat transfer fin. equation representing variation reduced to its dimensionless arrangement numerically solved using Rung, e-Kutta-Fehlberg’s fourth-fifth order method (RKF-45). study demonstrates effectiveness this model, results indicate approach outperforms ANN parameters obtained through grid search (GS), showcasing superiority DE-ANN terms accuracy performance. This research highlights potential utilizing DE improved predictive modeling sector. originality it addresses problem by optimizing selection algorithm.
Язык: Английский
Процитировано
29