A low-temperature driven organic Rankine cycle for waste heat recovery from a geothermal driven Kalina cycle: 4E analysis and optimization based on artificial intelligence DOI Open Access
Tao Hai, Masood Ashraf Ali, Rishabh Chaturvedi

и другие.

Sustainable Energy Technologies and Assessments, Год журнала: 2022, Номер 55, С. 102895 - 102895

Опубликована: Ноя. 25, 2022

Язык: Английский

Application of artificial intelligence for prediction, optimization, and control of thermal energy storage systems DOI
A.G. Olabi,

Aasim Ahmed Abdelghafar,

Hussein M. Maghrabie

и другие.

Thermal Science and Engineering Progress, Год журнала: 2023, Номер 39, С. 101730 - 101730

Опубликована: Фев. 20, 2023

Язык: Английский

Процитировано

95

Statistical modeling and investigation of thermal characteristics of a new nanofluid containing cerium oxide powder DOI Creative Commons
Behrooz Ruhani,

Mansour Taheri Andani,

Azher M. Abed

и другие.

Heliyon, Год журнала: 2022, Номер 8(11), С. e11373 - e11373

Опубликована: Ноя. 1, 2022

In this paper, the thermal conductivity (knf) of cerium oxide/ethylene glycol nanofluid is extracted for different temperatures (T = 25, 30, 35, 40, 45, and 50 °C) volume fraction nanoparticles (φ= 0, 0.25, 0.5, 0.75, 1, 1.5, 2 2.5%) then knf predicted by two methods including Artificial Neural Network (ANN) fitting method. For both methods, results have been presented compared. The experiments showed that with increasing φ temperature, ratio (TCR) increases. It was also observed when are performed at high temperatures, rate increase in much higher than change same amount low temperatures. An ANN 7 neurons has a correlation coefficient very close to 1 proves outputs compatible experimental results. Also, it can be seen could predict behavior more accurately.

Язык: Английский

Процитировано

75

Advances in phase change materials, heat transfer enhancement techniques, and their applications in thermal energy storage: A comprehensive review DOI

Zi Liang Yang,

Rashmi Walvekar, Weng Pin Wong

и другие.

Journal of Energy Storage, Год журнала: 2024, Номер 87, С. 111329 - 111329

Опубликована: Март 29, 2024

Язык: Английский

Процитировано

60

A review of the state-of-the-art on thermal insulation performance of polymeric foams DOI
Rezgar Hasanzadeh, Taher Azdast, Patrick Lee

и другие.

Thermal Science and Engineering Progress, Год журнала: 2023, Номер 41, С. 101808 - 101808

Опубликована: Март 28, 2023

Язык: Английский

Процитировано

57

Depth optimization of solidification properties of a latent heat energy storage unit under constant rotation mechanism DOI
Xinyu Huang, Fangfei Li, Liu Lu

и другие.

Energy and Buildings, Год журнала: 2023, Номер 290, С. 113099 - 113099

Опубликована: Апрель 23, 2023

Язык: Английский

Процитировано

55

Valorization of Spent coffee Grounds: A sustainable resource for Bio-based phase change materials for thermal energy storage DOI
Pin Jin Ong,

Yihao Leow,

Xiang Yun Debbie Soo

и другие.

Waste Management, Год журнала: 2023, Номер 157, С. 339 - 347

Опубликована: Янв. 3, 2023

Язык: Английский

Процитировано

50

Lignin-g-polycaprolactone as a form-stable phase change material for thermal energy storage application DOI
Johnathan Joo Cheng Lee, Sigit Sugiarto, Pin Jin Ong

и другие.

Journal of Energy Storage, Год журнала: 2022, Номер 56, С. 106118 - 106118

Опубликована: Ноя. 18, 2022

Язык: Английский

Процитировано

45

Using internal sinusoidal fins and phase change material for performance enhancement of thermal energy storage systems: Heat transfer and entropy generation analyses DOI

Ali Tavakoli,

Mahmood Farzaneh-Gord, Amir Ebrahimi‐Moghadam

и другие.

Renewable Energy, Год журнала: 2023, Номер 205, С. 222 - 237

Опубликована: Янв. 22, 2023

Язык: Английский

Процитировано

33

Evolutionary Computing for the Radiative–Convective Heat Transfer of a Wetted Wavy Fin Using a Genetic Algorithm-Based Neural Network DOI Creative Commons

Borra Poornima,

Ioannis E. Sarris,

K Chandan

и другие.

Biomimetics, Год журнала: 2023, Номер 8(8), С. 574 - 574

Опубликована: Дек. 1, 2023

Evolutionary algorithms are a large class of optimization techniques inspired by the ideas natural selection, and can be employed to address challenging problems. These iteratively evolve populations using crossover, which combines genetic information from two parent solutions, mutation, adds random changes. This iterative process tends produce effective solutions. Inspired this, current study presents results thermal variation on surface wetted wavy fin algorithm in context parameter estimation for artificial neural network models. The physical features convective radiative heat transfer during wet conditions also considered develop model. highly nonlinear governing ordinary differential equation proposed problem is transmuted into dimensionless equation. graphical outcomes aspects profile demonstrated specific non-dimensional variables. primary observation decrease temperature with rise parameters convective-conductive parameters. implemented offers powerful technique that effectively tune network, leading an enhanced predictive accuracy convergence numerically obtained solution.

Язык: Английский

Процитировано

31

Analysis of Heat Transfer Behavior of Porous Wavy Fin with Radiation and Convection by Using a Machine Learning Technique DOI Open Access

K Chandan,

P. Nimmy,

K.V. Nagaraja

и другие.

Symmetry, Год журнала: 2023, Номер 15(8), С. 1601 - 1601

Опубликована: Авг. 18, 2023

The impact of convection and radiation on the thermal distribution wavy porous fin is examined in present study. A hybrid model that combines differential evolution (DE) algorithm with an artificial neural network (ANN) proposed for predicting heat transfer fin. equation representing variation reduced to its dimensionless arrangement numerically solved using Rung, e-Kutta-Fehlberg’s fourth-fifth order method (RKF-45). study demonstrates effectiveness this model, results indicate approach outperforms ANN parameters obtained through grid search (GS), showcasing superiority DE-ANN terms accuracy performance. This research highlights potential utilizing DE improved predictive modeling sector. originality it addresses problem by optimizing selection algorithm.

Язык: Английский

Процитировано

29