Strategic resource management for economic sustainability: Assessing the impact of technological advancement and energy efficiency DOI
Peiyuan Li, Dandan Wang, Quratulain Zafar

и другие.

Resources Policy, Год журнала: 2024, Номер 89, С. 104631 - 104631

Опубликована: Янв. 12, 2024

Язык: Английский

Identifying and prioritization barriers to renewable energy diffusion in developing countries: a novel spherical fuzzy AHP approach and application DOI
Daud Abdul, Wenqi Jiang

Energy Efficiency, Год журнала: 2024, Номер 17(5)

Опубликована: Апрель 24, 2024

Язык: Английский

Процитировано

7

Optimizing decision-making in electric power system selection: A generalized approach based on Hamacher aggregation operators for q-rung orthopair fuzzy soft sets DOI
Aurang Zeb, Waseem Ahmad, Muhammad Asif

и другие.

Applied Energy, Год журнала: 2024, Номер 367, С. 123405 - 123405

Опубликована: Май 13, 2024

Язык: Английский

Процитировано

7

Ensuring environment sustainability through natural resources, renewable energy consumption, and inflation dynamics DOI
Wei Ma, Tong Wu, Sebastian Emanuel Stan

и другие.

Resources Policy, Год журнала: 2024, Номер 90, С. 104676 - 104676

Опубликована: Фев. 8, 2024

Язык: Английский

Процитировано

6

The nexus between resource depletion, price fluctuations, and sustainable development in expenditure on resources DOI
Tianyang Wang, Menggang Li, Muhammad Faisal Rasheed

и другие.

Resources Policy, Год журнала: 2024, Номер 89, С. 104629 - 104629

Опубликована: Янв. 12, 2024

Язык: Английский

Процитировано

5

Mineral resources, tourism, human capital, and carbon neutrality: A path towards balanced and sustainable development DOI
Hongwei Zhang,

Fang Ben,

Meng Qin

и другие.

Resources Policy, Год журнала: 2024, Номер 90, С. 104756 - 104756

Опубликована: Фев. 17, 2024

Язык: Английский

Процитировано

5

Transitioning to sustainable energy: Multidimensional factors guiding solar power technology adoption DOI
Gul Jabeen, Dong Wang, Munir Ahmad

и другие.

Energy, Год журнала: 2024, Номер unknown, С. 133468 - 133468

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

5

Mineral resource volatility and green growth: The role of technological development, environmental policy stringency, and trade openness DOI Creative Commons

Meihong Feng,

Donghang Zou,

Muhammad Hafeez

и другие.

Resources Policy, Год журнала: 2024, Номер 89, С. 104630 - 104630

Опубликована: Янв. 12, 2024

While natural resources significantly contribute to global socio-economic development, the unresolved question of their volatility's role in decoupling economic growth and carbon emissions persists. Previous empirical studies have underscored both positive negative impacts resource exploration on environment. This study addresses knowledge gap by employing a linear non-linear panel ARDL framework investigate correlation between re source volatility sustainable development BRICS economies. Our key findings reveal that adversely green within model short long run. Conversely, model, an increase negatively influences growth, whereas decrease encourages albeit only Moreover, we found technological stringent environmental policies, trade openness are conducive growth. These results underscore necessity for managing foster particularly emerging

Язык: Английский

Процитировано

4

Sustainable energy transition optimization through decentralized hybrid energy systems with various energy storage technologies under multi-criterion indices: A mid-career repowering scenarios DOI
Shahid Nawaz Khan, Muhammad Abdullah,

Ahmad Nadeem

и другие.

Journal of Energy Storage, Год журнала: 2024, Номер 94, С. 112490 - 112490

Опубликована: Июнь 14, 2024

Язык: Английский

Процитировано

4

Ensuring environment sustainability through natural resources, renewable energy consumption, and inflation dynamics DOI
Wei Ma, Tong Wu, Sebastian Emanuel Stan

и другие.

SSRN Electronic Journal, Год журнала: 2025, Номер unknown

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

LTPNet Integration of Deep Learning and Environmental Decision Support Systems for Renewable Energy Demand Forecasting DOI Open Access
Te Li, Min Zheng, Yan Zhou

и другие.

Journal of Organizational and End User Computing, Год журнала: 2025, Номер 37(1), С. 1 - 29

Опубликована: Фев. 21, 2025

Against the backdrop of increasingly severe global environmental changes, accurately predicting and meeting renewable energy demands has become a key challenge for sustainable business development. Traditional demand forecasting methods often struggle with complex data processing low prediction accuracy. To address these issues, this paper introduces novel approach that combines deep learning techniques decision support systems. The model integrates advanced techniques, including LSTM Transformer, PSO algorithm parameter optimization, significantly enhancing predictive performance practical applicability. Results show our achieves substantial improvements across various metrics, 30% reduction in MAE, 20% decrease MAPE, 25% drop RMSE, 35% decline MSE. These results validate model's effectiveness reliability forecasting. This research provides valuable insights applying

Язык: Английский

Процитировано

0