Considering Landscape Patterns and Development Equity to Enhance the Interaction of Nighttime Lighting with Sustainable Development Goals DOI
Chengyuan Wang,

Yuheng Wu,

Yuan Liu

и другие.

Опубликована: Янв. 1, 2024

Язык: Английский

Multi-scale carbon emission characterization and prediction based on land use and interpretable machine learning model: A case study of the Yangtze River Delta Region, China DOI
Haizhi Luo, Chenglong Wang,

Cangbai Li

и другие.

Applied Energy, Год журнала: 2024, Номер 360, С. 122819 - 122819

Опубликована: Фев. 10, 2024

Язык: Английский

Процитировано

37

Agri-food evolution and carbon emissions in Chinese residential consumption: A life cycle analysis of urban-rural disparities and socioeconomic influences DOI

Arshad Ahmad Khan,

Bingjing Mei,

Sufyan Ullah Khan

и другие.

Environmental Impact Assessment Review, Год журнала: 2023, Номер 105, С. 107387 - 107387

Опубликована: Дек. 6, 2023

Язык: Английский

Процитировано

26

Exploring the key influencing factors of low-carbon innovation from urban characteristics in China using interpretable machine learning DOI
Wentao Wang, Dezhi Li, Shenghua Zhou

и другие.

Environmental Impact Assessment Review, Год журнала: 2024, Номер 107, С. 107573 - 107573

Опубликована: Июнь 7, 2024

Язык: Английский

Процитировано

15

Exploring provincial carbon-pollutant emission efficiency in China: An integrated approach with social network analysis and spatial econometrics DOI Creative Commons
Chaoping Zhu,

Yixuan Su,

Ruguo Fan

и другие.

Ecological Indicators, Год журнала: 2024, Номер 159, С. 111662 - 111662

Опубликована: Янв. 31, 2024

Carbon emissions and air pollutant in China share common sources. A thorough examination of carbon is imperative for a comprehensive understanding. This study aims to assess carbon-pollutant efficiency (CPEE) 30 Chinese provinces from 2006 2020, focusing on the integration emissions. Previous research CPEE limited, this article addresses gap by investigating its spatiotemporal characteristics identifying potential influencing factors. Our employs super-efficiency data envelopment analysis model, social network analysis, spatial econometric models. The results indicate that: (1) During period, provincial follows "W-shaped" trend exhibits "bimodal" asymmetric distribution, indicating notable regional heterogeneity. (2) Although correlations are unstable do not adhere strict hierarchical structure, positive spillover effects evident CPEE. (3) correlation displays various characteristics, including Matthew effect, external preference, siphoning altruistic tendency. (4) Apart technical input, explanatory variables affecting exert significantly negative direct impact. Furthermore, indirect effect energy intensity contradicts when economic distance considered weight setting. These findings provide valuable theoretical insights practical guidance improving synergistic effects.

Язык: Английский

Процитировано

14

The correlation between water‑carbon and urban spatial form in built-up areas: Evidence from Shenzhen City, China DOI
Gaoyuan Wang, Muhan Li, Yangli Li

и другие.

Urban Climate, Год журнала: 2025, Номер 59, С. 102292 - 102292

Опубликована: Янв. 21, 2025

Язык: Английский

Процитировано

1

Spatiotemporal prediction of carbon emissions using a hybrid deep learning model considering temporal and spatial correlations DOI
Yixiang Chen,

Yuxin Xie,

Dang Xu

и другие.

Environmental Modelling & Software, Год журнала: 2023, Номер 172, С. 105937 - 105937

Опубликована: Дек. 23, 2023

Язык: Английский

Процитировано

12

High-resolution carbon emission mapping and spatial-temporal analysis based on multi-source geographic data: A case study in Xi’an City, China DOI
Ziyan Liu,

Ling Han,

Ming Liu

и другие.

Environmental Pollution, Год журнала: 2024, Номер 361, С. 124879 - 124879

Опубликована: Сен. 1, 2024

Язык: Английский

Процитировано

4

The Impact of Agglomeration on CO2 Emissions in China's Transport Sector: A Spatial Econometric Analysis DOI
Puju Cao, Zhao Liu, Huan Zhang

и другие.

Sustainable Cities and Society, Год журнала: 2024, Номер 117, С. 105966 - 105966

Опубликована: Ноя. 6, 2024

Язык: Английский

Процитировано

3

Exploring the spatial association characteristics of carbon emission efficiency in China’s construction industry: A network perspective DOI
Fangliang Wang, Qi Zhang

Energy and Buildings, Год журнала: 2025, Номер 329, С. 115289 - 115289

Опубликована: Янв. 11, 2025

Язык: Английский

Процитировано

0

Toward a low-carbon economy: Insights from low- carbon complexity index DOI
Lulu Zhang, Gang Diao,

Kairui You

и другие.

Environmental Impact Assessment Review, Год журнала: 2025, Номер 112, С. 107856 - 107856

Опубликована: Фев. 11, 2025

Язык: Английский

Процитировано

0