Quantifying thresholds of key drivers for ecosystem health in large-scale river basins: A case study of the upper and middle Yellow River DOI
Xue Li,

Kunxia Yu,

Guoce Xu

и другие.

Journal of Environmental Management, Год журнала: 2025, Номер 383, С. 125480 - 125480

Опубликована: Апрель 24, 2025

Язык: Английский

Ecosystem service bundles under SSP-RCP and local scenarios: A pathway to comprehensive spatial planning for sustainability DOI Creative Commons
Shihao Zhou, Yuanqi Qu, Yixiang Wang

и другие.

Resources Environment and Sustainability, Год журнала: 2025, Номер unknown, С. 100211 - 100211

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Exploring ecosystem services dynamics and interactions under future climate change: A case study of the city cluster in the middle reaches of the Yangtze River DOI
Kai Lv,

Zhenjiang Si,

Wanjun Ren

и другие.

Deleted Journal, Год журнала: 2025, Номер unknown

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Urban climate risk assessment under climate and land use changes impact: A multi-dimensional approach DOI
Hao Wu, Yifeng Qin, Dobri Dunchev

и другие.

Urban Climate, Год журнала: 2025, Номер 61, С. 102379 - 102379

Опубликована: Март 17, 2025

Процитировано

0

Characteristics of Ecosystem Services in Megacities Within the Yellow River Basin, Analyzed Through a Resilience Perspective: A Case Study of Xi’an and Jinan DOI Open Access
Bowen Zhang,

Xianglong Tang,

J. J. Cui

и другие.

Sustainability, Год журнала: 2025, Номер 17(8), С. 3371 - 3371

Опубликована: Апрель 10, 2025

Megacities in developing countries are still undergoing rapid urbanization, with different cities exhibiting ecosystem services (ESs) heterogeneity. Evaluating ESs among various and analyzing the influencing factors from a resilience perspective can effectively enhance ability of to deal react quickly risks uncertainty. This approach is also crucial for optimizing ecological security patterns. study focuses on Xi’an Jinan, two important megacities along Yellow River China. First, we quantified four both cities: carbon storage (CS), habitat quality (HQ), food production (FP), soil conservation (SC). Second, analyzed synergies trade-offs between these using bivariate local spatial autocorrelation Spearman’s rank correlation coefficient. Finally, conducted driver analysis Geographic Detector. Results: (1) The temporal distribution Jinan quite different, but show lower ES levels urban core area. (2) showed strong synergistic effect. Among them, CS-HQ had strongest synergy 0.93. In terms space, north dominated by low–low clustering, while south high–high clustering. FP-SC trade-off effect −0.35 2000, which gradually weakened over time was mainly distributed northern area city where cropland construction were concentrated. (3) Edge density, patch NDVI have greatest influence CS Jinan. DEM, slope, density HQ. Temperature, edge impact temperature FP cities. SC. Landscape fragmentation has great CS, HQ, SC Due insufficient research data, this focused only middle reaches River. However, results provide new solving problem regional sustainable development directions ideas follow-up field.

Язык: Английский

Процитировано

0

Quantifying thresholds of key drivers for ecosystem health in large-scale river basins: A case study of the upper and middle Yellow River DOI
Xue Li,

Kunxia Yu,

Guoce Xu

и другие.

Journal of Environmental Management, Год журнала: 2025, Номер 383, С. 125480 - 125480

Опубликована: Апрель 24, 2025

Язык: Английский

Процитировано

0