Spatio-Temporal Evolution and Multi-Scenario Prediction of Ecosystem Carbon Storage in Chang-Zhu-Tan Urban Agglomeration Based on the FLUS-InVEST Model DOI Open Access

Weiyi Sun,

Xianzhao Liu

Sustainability, Год журнала: 2024, Номер 16(16), С. 7025 - 7025

Опубликована: Авг. 16, 2024

Land use/land cover change has a significant indicative effect on the carbon storage of terrestrial ecosystems. We selected Chang-Zhu-Tan urban agglomeration as research object, coupled FLUS and InVEST models to explore changes in land use region from 2010 2020, predicted their spatiotemporal evolution characteristics under three scenarios 2035: natural development (S1), ecological priority (S2) (S3). Spatial autocorrelation was used analyze spatial distribution storage. The results revealed rapid expansion encroaching cultivated forest resulting total area 1957.50 km2 by 2020. Carbon experienced loss 6.86 × 106 t, primarily between 2015. model indicated pattern “low middle high around”, with areas low showing large-scale faceted aggregate 2035. Under different regional scenarios, S3 exhibited highest loss, reaching 150.93 t. S1 decline 136.30 while S2 only reduction 24.26 primary driving factor is conversion into areas. It recommended that implementation protection policies optimization structures effectively minimize

Язык: Английский

Reassessing the ecological effectiveness of ecological restoration programs: Evidence from a quasi-natural experiment in China DOI
Yuanjie Deng, Xiaohan Yan, Mengyang Hou

и другие.

Ecological Engineering, Год журнала: 2025, Номер 212, С. 107506 - 107506

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

3

Synergy of Remote Sensing and Geospatial Technologies to Advance Sustainable Development Goals for Future Coastal Urbanization and Environmental Challenges in a Riverine Megacity DOI Creative Commons
Minza Mumtaz,

Syed Humayoun Jahanzaib,

Waqar Hussain

и другие.

ISPRS International Journal of Geo-Information, Год журнала: 2025, Номер 14(1), С. 30 - 30

Опубликована: Янв. 14, 2025

Riverine coastal megacities, particularly in semi-arid South Asian regions, face escalating environmental challenges due to rapid urbanization and climate change. While previous studies have examined urban growth patterns or impacts independently, there remains a critical gap understanding the integrated of land use/land cover (LULC) changes on both ecosystem vulnerability sustainable development achievements. This study addresses this through an innovative integration multitemporal Landsat imagery (5, 7, 8), SRTM-DEM, historical use maps, population data using MOLUSCE plugin with cellular automata–artificial neural networks (CA-ANN) modelling monitor LULC over three decades (1990–2020) project future for 2025, 2030, 2035, supporting Sustainable Development Goals (SDGs) Karachi, southern Pakistan, one world’s most populous megacities. The framework integrates analysis SDG metrics, achieving overall accuracy greater than 97%, user producer accuracies above 77% Kappa coefficient approaching 1, demonstrating high level agreement. Results revealed significant expansion from 13.4% 23.7% total area between 1990 2020, concurrent reductions vegetation cover, water bodies, wetlands. Erosion along riverbank has caused Malir River’s decrease 17.19 5.07 km2 by highlighting key factor contributing flooding during monsoon season. Flood risk projections indicate that urbanized areas will be affected, 66.65% potentially inundated 2035. study’s contribution lies quantifying achievements, showing varied progress: 26% 9 (Industry, Innovation, Infrastructure), 18% 11 (Sustainable Cities Communities), 13% 13 (Climate Action), 16% 8 (Decent Work Economic Growth). However, declining bodies pose 15 (Life Land) 6 (Clean Water Sanitation), 11%, respectively. approach provides valuable insights planners, offering novel adaptive planning strategies advancing practices similar stressed megacity regions.

Язык: Английский

Процитировано

2

Enhancing Carbon Sequestration through Afforestation: Evaluating the Impact of Land Use and Cover Changes on Carbon Storage Dynamics DOI
Muhammad Haseeb, Zainab Tahir,

Syed Amer Mehmood

и другие.

Earth Systems and Environment, Год журнала: 2024, Номер 8(4), С. 1563 - 1582

Опубликована: Июнь 15, 2024

Язык: Английский

Процитировано

11

Research on the spatiotemporal evolution characteristics and driving mechanisms of supply–demand risks of ecosystem services in the yellow river basin integrating the hierarchy of needs theory DOI Creative Commons

Tianlin Zhai,

Yuanbo Ma,

Longyang Huang

и другие.

Ecological Indicators, Год журнала: 2025, Номер 171, С. 113229 - 113229

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

1

The nonlinear effects of digital finance on carbon performance: Evidence from China DOI Creative Commons
Bing Zhou, Yu-Lan Wang,

Bin-Hu

и другие.

Journal of Innovation & Knowledge, Год журнала: 2024, Номер 9(2), С. 100484 - 100484

Опубликована: Март 29, 2024

To address global climate change and achieve high-quality development, China has to reach carbon peaking neutrality targets as objective requirements. Based on data from 30 Chinese provinces 2011 2021, this study used a two-factor fixed effects mechanism model test the mechanisms of digital finance performance. The findings imply that development nonlinear effect "first inhibit, then promote" principle Meanwhile, both coverage breadth usage depth have more significant impact Digital financing can improve regional performance through green technology innovation, industrial upgrades, energy structure optimization. In addition, exhibited heterogeneity. Specifically, higher level marketization lower urban–rural income gap, effect. eastern region advantage being rich in resources technology, is obvious compared central western regions. Therefore, should accelerate integration financial services with modern technologies low-carbon based local conditions.

Язык: Английский

Процитировано

8

Spatio-Temporal Analysis of Hydrometeorological Variables for Terrestrial and Groundwater Storage Assessment DOI
Muhammad Shareef Shazil, Sheharyar Ahmad, Syed Amer Mahmood

и другие.

Groundwater for Sustainable Development, Год журнала: 2024, Номер 27, С. 101333 - 101333

Опубликована: Сен. 4, 2024

Язык: Английский

Процитировано

8

Spatial Optimization of Land Use and Carbon Storage Prediction in Urban Agglomerations under Climate Change: Different Scenarios and Multiscale Perspectives of CMIP6 DOI
Hao Wu, Yi Yang, Wen Li

и другие.

Sustainable Cities and Society, Год журнала: 2024, Номер unknown, С. 105920 - 105920

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

4

Can urban compactness improve ecosystem services: Evidence from Chinese urban agglomerations DOI Creative Commons
Xuewei Zhang, Jiahui Wu,

Jintao Yuan

и другие.

Ecological Indicators, Год журнала: 2025, Номер 170, С. 113075 - 113075

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Sub-District Level Spatiotemporal Changes of Carbon Storage and Driving Factor Analysis: A Case Study in Beijing DOI Creative Commons

Yirui Zhang,

Shouhang Du, Linye Zhu

и другие.

Land, Год журнала: 2025, Номер 14(1), С. 151 - 151

Опубликована: Янв. 13, 2025

Analyzing the current trends and causes of carbon storage changes accurately predicting future land use under different climate scenarios is crucial for regional decision-making management. This study focuses on Beijing as its area introduces a framework that combines Markov model, Patch-based Land Use Simulation (PLUS) Integrated Valuation Ecosystem Services Tradeoffs (InVEST) model to assess at sub-district level. allows systematic analysis spatiotemporal evolution in from 2000 2020, including influence driving factors storage. Moreover, it enables simulation prediction 2025 2040 various scenarios. The results show following: (1) From overall change showed trend “Significant decrease cropland area; Forest increase gradually; Shrub grassland first then decrease; Decrease water; Impervious expands large scale”. (2) “decrease-increase” fluctuation, with an 1.3 Tg. In prediction, ecological protection scenario will contribute achieving goals peak neutrality. (3) Among factors, slope has strongest impact Beijing, followed by Human Activity Intensity (HAI) Nighttime Light Data (NTL). built-up areas, was found HAI DEM (Digital Elevation Model) have effect, NTL Fractional Vegetation Cover (FVC). findings this offer valuable insights sustainable advancement conservation urban development Beijing.

Язык: Английский

Процитировано

0

Response of the Bohai Rim carbon storage to rapid urban expansion DOI
Lei Zhang, Guangxue Li, Guoyi Wen

и другие.

Ocean & Coastal Management, Год журнала: 2025, Номер 261, С. 107544 - 107544

Опубликована: Янв. 19, 2025

Язык: Английский

Процитировано

0