Remote Sensing in Earth Systems Sciences, Год журнала: 2024, Номер unknown
Опубликована: Сен. 20, 2024
Язык: Английский
Remote Sensing in Earth Systems Sciences, Год журнала: 2024, Номер unknown
Опубликована: Сен. 20, 2024
Язык: Английский
Computers and Electronics in Agriculture, Год журнала: 2024, Номер 227, С. 109501 - 109501
Опубликована: Окт. 15, 2024
Язык: Английский
Процитировано
9Precision Agriculture, Год журнала: 2024, Номер 25(4), С. 1933 - 1957
Опубликована: Май 2, 2024
Язык: Английский
Процитировано
7Computers and Electronics in Agriculture, Год журнала: 2024, Номер 224, С. 109190 - 109190
Опубликована: Июнь 26, 2024
Язык: Английский
Процитировано
7European Journal of Agronomy, Год журнала: 2024, Номер 160, С. 127299 - 127299
Опубликована: Авг. 7, 2024
Язык: Английский
Процитировано
7Computers and Electronics in Agriculture, Год журнала: 2025, Номер 234, С. 110317 - 110317
Опубликована: Март 23, 2025
Язык: Английский
Процитировано
1Agronomy, Год журнала: 2025, Номер 15(5), С. 1114 - 1114
Опубликована: Апрель 30, 2025
In the context of climate change and development sustainable agricultural, crop yield prediction is key to ensuring food security. this study, long-term vegetation meteorological indices were obtained from MOD09A1 product daily weather data. Three types time series data constructed by aggregating an 8-day period (DP), 9-month (MP), six growth periods (GP). And we developed model using random forest (RF) long short-term memory (LSTM) networks. Results showed that average root mean squared error (RMSE) RF in each province was 0.5 Mg/ha lower than LSTM model. Both accuracies increased with later stages Partial dependence plots influence degree DVI on above 2 Mg/ha. When length feature variables shortened MP or GP, growing days (GDD), minimum temperature (AveTmin), effective precipitation (EP) stronger nonlinear relationships statistical yields.
Язык: Английский
Процитировано
0Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0European Journal of Agronomy, Год журнала: 2024, Номер 161, С. 127338 - 127338
Опубликована: Сен. 11, 2024
Язык: Английский
Процитировано
1Applied Mathematics and Nonlinear Sciences, Год журнала: 2024, Номер 9(1)
Опубликована: Янв. 1, 2024
Abstract To enhance the accuracy of recognizing traditional settlement landscapes in Hainan, this study introduces a landscape recognition model predicated on full convolutional neural network (FCN). The research delineates selection specific types and sensors for Unmanned Aerial Vehicles (UAVs), employing UAV remote sensing technology to capture image data Hainan's landscapes. collected initial data, laden with interference information, underwent preprocessing step. On foundation, settlements was developed utilizing FCN. empirical results derived from deploying reveal presence ancient buildings within 400-meter radius principal river. Notably, these structures predominantly span distance ranging 100 350 meters. spatial distribution pattern edifices notably centers around Zong ancestral hall. Furthermore, when compared other benchmark models, proposed FCN exhibits superior performance forest, grassland, farmland Hainan landscape, achieving average rates 88.66% 84.91%, respectively. This investigation underscores significant potential applying identifying It provides pivotal technical support reference point survey forest resources ecological monitoring, thereby enhancing applicability dissemination tasks.
Язык: Английский
Процитировано
0Remote Sensing in Earth Systems Sciences, Год журнала: 2024, Номер unknown
Опубликована: Сен. 20, 2024
Язык: Английский
Процитировано
0