An Optimization Problem of Distributed Permutation Flowshop Scheduling with an Order Acceptance Strategy in Heterogeneous Factories DOI Creative Commons
Seungjae Lee, Byung Soo Kim

Mathematics, Год журнала: 2025, Номер 13(5), С. 877 - 877

Опубликована: Март 6, 2025

This paper addresses a distributed permutation flowshop scheduling problem with an order acceptance strategy in heterogeneous factories. Each has related revenue and due date, several machines are operated each factory, they have distinct sequence-dependent setup time. We select/reject production orders, assign the selected orders to factories, determine manufacturing sequence factory maximize total profit. To optimally solve problem, we formulate as mixed integer linear programming model find optimal solution for small-sized experiments. Then, propose two population-based algorithms, genetic algorithm particle swarm optimization large-sized proved that proposed effectively efficiently solves guarantee near through computational Finally, conduct sensitivity analysis of observe relationship between selection, revenue, tardiness cost.

Язык: Английский

Fifty years of research in scheduling – theory and applications DOI
Alessandro Agnetis, Jean-Charles Billaut, Michael Pinedo

и другие.

European Journal of Operational Research, Год журнала: 2025, Номер unknown

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

1

Learning-based collaborative optimization for multi-objective energy-aware distributed assembly blocking flow shop scheduling DOI
Songlin Du, Wenju Zhou, Dakui Wu

и другие.

Computers & Industrial Engineering, Год журнала: 2025, Номер unknown, С. 111214 - 111214

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

1

A tabu memory based iterated greedy algorithm for the distributed heterogeneous permutation flowshop scheduling problem with the total tardiness criterion DOI
Xiaobing Feng, Fei Zhao, Gedong Jiang

и другие.

Expert Systems with Applications, Год журнала: 2023, Номер 238, С. 121790 - 121790

Опубликована: Окт. 6, 2023

Язык: Английский

Процитировано

16

Self-Adaptive Population-Based Iterated Greedy Algorithm for Distributed Permutation Flowshop Scheduling Problem with Part of Jobs Subject to a Common Deadline Constraint DOI
Qiuying Li, Quan-Ke Pan, Hongyan Sang

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 248, С. 123278 - 123278

Опубликована: Янв. 18, 2024

Язык: Английский

Процитировано

6

An efficient Q-learning integrated multi-objective hyper-heuristic approach for hybrid flow shop scheduling problems with lot streaming DOI

Yarong Chen,

Jia Yan Du, Jabir Mumtaz

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 262, С. 125616 - 125616

Опубликована: Окт. 30, 2024

Язык: Английский

Процитировано

6

A cooperative grey wolf optimizer for the joint flowshop scheduling problem with sequence-dependent set-up time DOI
Shuilin Chen, Jianguo Zheng, Wenqiu Zhang

и другие.

Engineering Optimization, Год журнала: 2024, Номер unknown, С. 1 - 23

Опубликована: Апрель 12, 2024

With the complexity involved in manufacturing products, many companies use multiple processes to complete product processing. Most studies have been concerned with single production but neglected widespread joint flowshop scheduling problem (JFSP). In this article, a cooperative grey wolf optimizer (CGWO) is developed solve JFSP. First, according features of JFSP, corresponding mathematical model constructed, and three collaborative strategies random generation are proposed initialize population. process searching for prey, discretized search prey update mechanism proposed, which conducive balancing exploration exploitation. An energy-saving strategy decrease energy consumption. Moreover, four local mechanisms different optimization objectives enhance performance method attacking prey. The results show that CGWO effective solving

Язык: Английский

Процитировано

5

An effective adaptive iterated greedy algorithm for a cascaded flowshop joint scheduling problem DOI

Chuang Wang,

Quan-Ke Pan, Xue-Lei Jing

и другие.

Expert Systems with Applications, Год журнала: 2023, Номер 238, С. 121856 - 121856

Опубликована: Сен. 26, 2023

Язык: Английский

Процитировано

11

A learning-based memetic algorithm for energy-efficient distributed flow-shop scheduling with preventive maintenance DOI
Jingjing Wang, Honggui Han

Swarm and Evolutionary Computation, Год журнала: 2024, Номер 92, С. 101772 - 101772

Опубликована: Ноя. 26, 2024

Язык: Английский

Процитировано

4

Energy-efficient Multi-objective Distributed Assembly Permutation Flowshop Scheduling by Q-learning based Meta-heuristics DOI
Hui Yu, Kaizhou Gao, Zhiwu Li

и другие.

Applied Soft Computing, Год журнала: 2024, Номер unknown, С. 112247 - 112247

Опубликована: Сен. 1, 2024

Язык: Английский

Процитировано

3

Minimising Makespan and Total Tardiness for the Flowshop Group Scheduling Problem with Sequence Dependent Setup Times DOI
Xuan He, Quan-Ke Pan, Liang Gao

и другие.

European Journal of Operational Research, Год журнала: 2025, Номер unknown

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0