Modeling Land Cover Change Using MOLUSCE in Kahayan Tengah Forest Management Unit, Kalimantan Tengah DOI Creative Commons
Beni Iskandar,

Saidah,

Adib Ahmad Kurnia

и другие.

Jurnal Sylva Lestari, Год журнала: 2024, Номер 12(2), С. 242 - 257

Опубликована: Март 12, 2024

A management unit-based land cover change analysis was examined in Kahayan Tengah Forest Management Unit (FMU) to understand past, present, and future assist forest planning FMU. This study aims model 2011 2016, predict 2021, simulate 2026 Modeling prediction simulation using MOLUSCE from the QGIS plugin. The results revealed that agricultural experienced significant increase total area during 2011–2016. potential transitions 2016 with Artificial Neural Network method showed a Kappa coefficient of 0.701 good category, 2021 Cellular Automata 0.672 category. By 2026, will continue while tends remain stable its area. managed simulated accuracy. Thus, this data information can support Keywords: unit, Tengah, change, prediction,

Язык: Английский

Evaluation of the synergistic change in cultivated land and wetland in northeast China from 1990 to 2035 DOI Creative Commons

Mengjing Li,

Wei Ye, Yajuan Li

и другие.

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Апрель 29, 2025

Язык: Английский

Процитировано

0

LULC change detection using support vector machines and cellular automata-based ANN models in Guna Tana watershed of Abay basin, Ethiopia DOI
Damte Tegegne Fetene, Tarun Kumar Lohani, Abdella Kemal Mohammed

и другие.

Environmental Monitoring and Assessment, Год журнала: 2023, Номер 195(11)

Опубликована: Окт. 17, 2023

Язык: Английский

Процитировано

7

Urban growth modeling for the assessment of future climate and disaster risks: approaches, gaps and needs DOI Creative Commons
Andrea Reimuth, Michael Hagenlocher, Liang Emlyn Yang

и другие.

Environmental Research Letters, Год журнала: 2023, Номер 19(1), С. 013002 - 013002

Опубликована: Ноя. 29, 2023

Abstract Urban climate-related disaster risks are set to rise, driven by the interaction of two global megatrends: urbanization and climate change. A detailed understanding whether, where how cities growing within or into hazard-prone areas is an urgent prerequisite for assessing future risk trajectories, risk-informed planning, adaptation decisions. However, this analysis has been mostly neglected date, as most change research focused on assessment hazard trends but less socio-economic changes affect exposure. growth expansion modeling provide a powerful tool, given that urban major driver in cities. The paper reviews achievements lately made exposure assesses they can be applied context future-oriented planning measures. It also analyses which methodological challenges persist might overcome. These points pertain particularly need consider integrate (1) morphology patterns potential linkages well vulnerability, (2) long-term time horizons developments, (3) feedbacks between trajectories trends, (4) integration drivers responses, (5) urbanization, (6) scenarios, developed commonly defined scenario framework.

Язык: Английский

Процитировано

7

Decadal analysis and simulation of land use and land cover changes in Taiwan using machine learning and markov chain models DOI Creative Commons
Cheng Liu, Aman Arora

Environment Development and Sustainability, Год журнала: 2024, Номер unknown

Опубликована: Дек. 17, 2024

Язык: Английский

Процитировано

2

Modeling Land Cover Change Using MOLUSCE in Kahayan Tengah Forest Management Unit, Kalimantan Tengah DOI Creative Commons
Beni Iskandar,

Saidah,

Adib Ahmad Kurnia

и другие.

Jurnal Sylva Lestari, Год журнала: 2024, Номер 12(2), С. 242 - 257

Опубликована: Март 12, 2024

A management unit-based land cover change analysis was examined in Kahayan Tengah Forest Management Unit (FMU) to understand past, present, and future assist forest planning FMU. This study aims model 2011 2016, predict 2021, simulate 2026 Modeling prediction simulation using MOLUSCE from the QGIS plugin. The results revealed that agricultural experienced significant increase total area during 2011–2016. potential transitions 2016 with Artificial Neural Network method showed a Kappa coefficient of 0.701 good category, 2021 Cellular Automata 0.672 category. By 2026, will continue while tends remain stable its area. managed simulated accuracy. Thus, this data information can support Keywords: unit, Tengah, change, prediction,

Язык: Английский

Процитировано

1