Energy and Buildings, Год журнала: 2019, Номер 194, С. 328 - 341
Опубликована: Апрель 24, 2019
Язык: Английский
Energy and Buildings, Год журнала: 2019, Номер 194, С. 328 - 341
Опубликована: Апрель 24, 2019
Язык: Английский
Sustainable Cities and Society, Год журнала: 2019, Номер 48, С. 101533 - 101533
Опубликована: Апрель 14, 2019
Язык: Английский
Процитировано
638International Journal of Forecasting, Год журнала: 2022, Номер 38(3), С. 705 - 871
Опубликована: Янв. 20, 2022
Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds future is both exciting challenging, with individuals organisations seeking to minimise risks maximise utilities. large number forecasting applications calls for a diverse set methods tackle real-life challenges. This article provides non-systematic review theory practice forecasting. We provide an overview wide range theoretical, state-of-the-art models, methods, principles, approaches prepare, produce, organise, evaluate forecasts. then demonstrate how such theoretical concepts are applied in variety contexts. do not claim this exhaustive list applications. However, we wish our encyclopedic presentation will offer point reference rich work undertaken over last decades, some key insights practice. Given its nature, intended mode reading non-linear. cross-references allow readers navigate through various topics. complement covered by lists free or open-source software implementations publicly-available databases.
Язык: Английский
Процитировано
560Energy and Buildings, Год журнала: 2018, Номер 171, С. 11 - 25
Опубликована: Апрель 18, 2018
Язык: Английский
Процитировано
495Applied Energy, Год журнала: 2021, Номер 285, С. 116452 - 116452
Опубликована: Янв. 13, 2021
Язык: Английский
Процитировано
448Journal of Cleaner Production, Год журнала: 2018, Номер 203, С. 810 - 821
Опубликована: Авг. 28, 2018
Predictive analytics play an important role in the management of decentralised energy systems. Prediction models uncontrolled variables (e.g., renewable sources generation, building consumption) are required to optimally manage electrical and thermal grids, making informed decisions for fault detection diagnosis. The paper presents a comprehensive study compare tree-based ensemble machine learning (random forest – RF extra trees ET), decision (DT) support vector regression (SVR) predict useful hourly from solar collector system. developed were compared based on their generalisation ability (stability), accuracy computational cost. It was found that ET have comparable predictive power equally applicable predicting (USTE), with root mean square error (RMSE) values 6.86 7.12 testing dataset, respectively. Amongst studied algorithms, DT is most computationally efficient method as it requires significantly less training time. However, accurate (RMSE = 8.76) than ET. time SVR 1287.80 ms, which approximately three times higher
Язык: Английский
Процитировано
447IEEE Access, Год журнала: 2020, Номер 8, С. 143759 - 143768
Опубликована: Янв. 1, 2020
Electric energy forecasting domain attracts researchers due to its key role in saving resources, where mainstream existing models are based on Gradient Boosting Regression (GBR), Artificial Neural Networks (ANNs), Extreme Learning Machine (ELM) and Support Vector (SVM). These encounter high-level of non-linearity between input data output predictions limited adoptability real-world scenarios. Meanwhile, demands more robustness, higher prediction accuracy generalization ability for implementation. In this paper, we achieve the mentioned tasks by developing a hybrid sequential learning-based model that employs Convolution Network (CNN) Gated Recurrent Units (GRU) into unified framework accurate consumption prediction. The proposed has two major phases: (1) refinement (2) training, phase applies preprocessing strategies over raw data. training phase, CNN features extracted from dataset fed GRU, is selected as optimal observed have enhanced sequence learning abilities after extensive experiments. an effective alternative previous terms computational complexity well accuracy, representative features' extraction potentials CNNs effectual gated structure multi-layered GRU. experimental evaluation datasets reveal better performance our method preciseness efficiency. achieved smallest error rate Appliances Energy Prediction (AEP) Individual Household Power Consumption (IHEPC) datasets, when compared other baseline models.
Язык: Английский
Процитировано
384Energy and Buildings, Год журнала: 2017, Номер 158, С. 1533 - 1543
Опубликована: Ноя. 26, 2017
Язык: Английский
Процитировано
383Energy and Buildings, Год журнала: 2020, Номер 221, С. 110022 - 110022
Опубликована: Апрель 30, 2020
Язык: Английский
Процитировано
382Sustainable Cities and Society, Год журнала: 2020, Номер 55, С. 102052 - 102052
Опубликована: Янв. 18, 2020
Язык: Английский
Процитировано
373Journal of Building Engineering, Год журнала: 2021, Номер 45, С. 103406 - 103406
Опубликована: Окт. 12, 2021
Язык: Английский
Процитировано
339