Energy and Buildings, Год журнала: 2023, Номер 295, С. 113326 - 113326
Опубликована: Июнь 27, 2023
Язык: Английский
Energy and Buildings, Год журнала: 2023, Номер 295, С. 113326 - 113326
Опубликована: Июнь 27, 2023
Язык: Английский
Advances in Applied Energy, Год журнала: 2023, Номер 9, С. 100123 - 100123
Опубликована: Янв. 13, 2023
Machine learning has been widely adopted for improving building energy efficiency and flexibility in the past decade owing to ever-increasing availability of massive operational data. However, it is challenging end-users understand trust machine models because their black-box nature. To this end, interpretability attracted increasing attention recent studies helps users decisions made by these models. This article reviews previous that interpretable techniques management analyze how model improved. First, are categorized according application stages techniques: ante-hoc post-hoc approaches. Then, analyzed detail specific with critical comparisons. Through review, we find broad faces following significant challenges: (1) different terminologies used describe which could cause confusion, (2) performance ML tasks difficult compare, (3) current prevalent such as SHAP LIME can only provide limited interpretability. Finally, discuss future R&D needs be accelerate management.
Язык: Английский
Процитировано
169Applied Energy, Год журнала: 2023, Номер 349, С. 121607 - 121607
Опубликована: Июль 27, 2023
Язык: Английский
Процитировано
51Energy & Fuels, Год журнала: 2024, Номер 38(3), С. 1692 - 1712
Опубликована: Янв. 19, 2024
Modern machine learning (ML) techniques are making inroads in every aspect of renewable energy for optimization and model prediction. The effective utilization ML the development scaling up systems needs a high degree accountability. However, most approaches currently use termed black box since their work is difficult to comprehend. Explainable artificial intelligence (XAI) an attractive option solve issue poor interoperability black-box methods. This review investigates relationship between (RE) XAI. It emphasizes potential advantages XAI improving performance efficacy RE systems. realized that although integration with has enormous alter how produced consumed, possible hazards barriers remain be overcome, particularly concerning transparency, accountability, fairness. Thus, extensive research required address societal ethical implications using create standardized data sets evaluation metrics. In summary, this paper shows potential, perspectives, opportunities, challenges application system management operation aiming target efficient energy-use goals more sustainable trustworthy future.
Язык: Английский
Процитировано
49Energy and Buildings, Год журнала: 2023, Номер 286, С. 112949 - 112949
Опубликована: Март 2, 2023
Язык: Английский
Процитировано
43Earth Science Informatics, Год журнала: 2024, Номер 17(2), С. 1281 - 1299
Опубликована: Янв. 10, 2024
Язык: Английский
Процитировано
18Energy and Buildings, Год журнала: 2023, Номер 298, С. 113513 - 113513
Опубликована: Сен. 4, 2023
Язык: Английский
Процитировано
31Buildings, Год журнала: 2023, Номер 13(2), С. 532 - 532
Опубликована: Фев. 15, 2023
Building energy consumption prediction has a significant effect on control, design optimization, retrofit evaluation, price guidance, and prevention control of COVID-19 in buildings, providing guarantee for efficiency carbon neutrality. This study reviews 116 research papers data-driven building from the perspective data machine learning algorithms discusses feasible techniques across time scales, levels, types context factors affecting prediction. The review results revealed that outdoor dry-bulb temperature is vital factor consumption. In prediction, preprocessing enables feature extraction types, hyperparameter optimization scales layers.
Язык: Английский
Процитировано
27Journal of Building Engineering, Год журнала: 2023, Номер 76, С. 107238 - 107238
Опубликована: Июль 3, 2023
Язык: Английский
Процитировано
27The Science of The Total Environment, Год журнала: 2024, Номер 929, С. 172465 - 172465
Опубликована: Апрель 12, 2024
Язык: Английский
Процитировано
13Journal of Building Engineering, Год журнала: 2024, Номер 91, С. 109424 - 109424
Опубликована: Апрель 22, 2024
Язык: Английский
Процитировано
12