
National Science Open, Год журнала: 2024, Номер 3(3), С. 20230068 - 20230068
Опубликована: Фев. 2, 2024
Язык: Английский
National Science Open, Год журнала: 2024, Номер 3(3), С. 20230068 - 20230068
Опубликована: Фев. 2, 2024
Язык: Английский
Mathematics, Год журнала: 2025, Номер 13(5), С. 797 - 797
Опубликована: Фев. 27, 2025
Intelligent fault diagnosis (IFD) plays a crucial role in reducing maintenance costs and enhancing the reliability of safety-critical energy systems (SCESs). In recent years, deep learning-based IFD methods have achieved high accuracy extracting implicit higher-order correlations between features. However, excessive long training time learning models conflicts with requirements real-time analysis for IFD, hindering their further application practical industrial environments. To address aforementioned challenge, this paper proposes an innovative method SCES that combines particle swarm optimization (PSO) algorithm ensemble broad system (EBLS). Specifically, (BLS), known its low complexity classification accuracy, is adopted as alternative to SCES. Furthermore, EBLS designed enhance model stability high-dimensional small samples by incorporating random forest (RF) strategy into traditional BLS framework. order reduce computational cost EBLS, which constrained selection hyperparameters, PSO employed optimize hyperparameters EBLS. Finally, validated through simulated data from complex nuclear power plant (NPP). Numerical experiments reveal proposed significantly improved diagnostic efficiency while maintaining accuracy. summary, approach shows great promise boosting capabilities
Язык: Английский
Процитировано
0Measurement Science and Technology, Год журнала: 2025, Номер 36(4), С. 046132 - 046132
Опубликована: Апрель 8, 2025
Abstract In the field of intelligent fault diagnosis mechanical equipment, existing cross-domain diagnostic models based on transfer learning (TL) do not utilise commonality information between two domains in data processing stage, which leads to loss transferable features that are essential for task. To address this issue, paper proposes a deep TL network model (CDPDTLN), consists (CDP) module, feature extraction module and domain-adaptive module. CDP adaptive multivariate variational modal decomposition algorithm is used process source target domain simultaneously, preserving common domains. realise work under various complex operating conditions, an improved multi-scale residual proposed extract domain-invariant features. combined distribution adaptation (CDDA) strategy align marginal conditional distributions CDDA strategy, weighted mean square discrepancy metric defined by combining maximum with enhance alignment confusion capabilities. multi-scenario experiments, accuracy CDPDTLN exceeds 95%. The results show can effectively retain learn features, significantly improving reliability robustness diagnosis.
Язык: Английский
Процитировано
0Renewable and Sustainable Energy Reviews, Год журнала: 2025, Номер 219, С. 115867 - 115867
Опубликована: Май 27, 2025
Язык: Английский
Процитировано
0National Science Open, Год журнала: 2024, Номер 3(3), С. 20230068 - 20230068
Опубликована: Фев. 2, 2024
Язык: Английский
Процитировано
1