Quantifying urban climate response to large-scale forcing modified by local boundary layer effects DOI Creative Commons
Seyed Mahmood Hamze‐Ziabari,

Mahdi Jafari,

Hendrik Huwald

и другие.

Frontiers in Environmental Science, Год журнала: 2024, Номер 12

Опубликована: Сен. 10, 2024

Over the past two decades, joint manifestation of global warming and rapid urbanization has significantly increased occurrence heatwaves formation urban heat islands in temperate cities. Consequently, this synergy amplified frequency duration periods with tropical nights (TNs) these areas. While occurrences such extreme events demonstrate irregular nonlinear annual patterns, they consistently manifest a discernible rising decadal trend local or regional climatic data. In regions situated amidst hilly mountainous landscapes, changing wind directions—often associated uphill downhill thermal flows—profoundly impact spread dispersion heat-related pollution, creating unique natural ventilation patterns. Using Lausanne/Pully area Switzerland as examples lakeshore cities, study explores influence patterns on nonlinearity recorded data within an environment. This integrates mesoscale numerical weather prediction model (COSMO-1), microscale Computational Fluid Dynamics (CFD) model, field observations, variational mode decomposition technique, statistical analysis to investigate how speed direction critically long-term trends events, specifically focusing TNs The results strongly indicate direct correlation between specific moderate These are exclusively captured by CFD unlike which neglects both morphology complex terrains. temporal spatial variability observations at fixed measurement stations suggests that caution should be exercised when relying limited points monitor quantify climate trends, particularly cities located

Язык: Английский

Urban heat island effect and its drivers in large cities of Pakistan DOI
Najeebullah Khan, Shamsuddin Shahid

Theoretical and Applied Climatology, Год журнала: 2024, Номер 155(6), С. 5433 - 5452

Опубликована: Апрель 8, 2024

Язык: Английский

Процитировано

10

Comparative simulation of transpiration and cooling impacts by porous canopies of shrubs and trees DOI
Jian Hang,

Le An,

Yujie Zhao

и другие.

Sustainable Cities and Society, Год журнала: 2024, Номер 111, С. 105573 - 105573

Опубликована: Июнь 5, 2024

Язык: Английский

Процитировано

8

Spatio-temporal Analysis of LST, NDVI and SUHI in a Coastal Temperate City using Local Climate Zone DOI Creative Commons
Tania Sharmin, Adrian Chappell, Simon Lannon

и другие.

Energy and Built Environment, Год журнала: 2024, Номер unknown

Опубликована: Июнь 1, 2024

Extreme heat due to changing climate poses a new challenge for temperate climates. The is further aggravated by inadequate research, policy, or preparedness effectively respond and recover from its impacts. While urban morphology plays crucial role in mitigating heat, it has received limited attention planning, highlighting the need exploration, particularly regions. To illustrate potential mitigations, we use example of coastal city Cardiff. establish interrelations between island patterns, explored spatiotemporal variations land surface temperature (LST), normalised difference vegetation index (NDVI), (SUHI) local zone (LCZ) classification Results showed significant variation SUHI LCZ zones. Both LST NDVI were found vary significantly across zones demonstrating their association with form locality. For built-up areas, more compact built-environment smaller cover larger building density was 2.0°C warmer than open when comparing mean summer LSTs. On average, natural classes exhibit that 8.0°C lower 6.0°C built-environment. Consequently, high-density, LCZs have greater effect compared classes. Therefore, cities will benefit incorporating an sufficient greenery spaces. These findings help determine optimal climates develop mitigation strategies while designing, improving existing areas. In addition, map applied this study Cardiff enable international comparison testing proven change adaptation techniques similar

Язык: Английский

Процитировано

7

Machine Learning in Modeling Urban Heat Islands: A Data-Driven Approach for Kuala Lumpur DOI
Nirwani Devi Miniandi, Mohamad Hidayat Jamal, Mohd Khairul Idlan Muhammad

и другие.

Earth Systems and Environment, Год журнала: 2025, Номер unknown

Опубликована: Фев. 7, 2025

Язык: Английский

Процитировано

1

Urbanization exacerbated the rapid growth of summer cooling demands in China from 1980 to 2023 DOI
Shaojing Jiang, Zhongwang Wei

Sustainable Cities and Society, Год журнала: 2024, Номер 106, С. 105382 - 105382

Опубликована: Март 26, 2024

Язык: Английский

Процитировано

5

CFD simulations on the wind and thermal environment in urban areas with complex terrain under calm conditions DOI
Shuo-Jun Mei, Jian Hang, Yifan Fan

и другие.

Sustainable Cities and Society, Год журнала: 2024, Номер unknown, С. 106022 - 106022

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

3

MULTI-CRITERIA APPROACH FOR THE ENERGY AND ENVIRONMENTAL IMPACT EVALUATION IN URBAN DISTRICTS IN THE CENTRAL MEDITERRANEAN AREA DOI Creative Commons
Samantha Di Loreto, Valentino Sangiorgio,

Massimiliano Bagagli

и другие.

Sustainable Cities and Society, Год журнала: 2025, Номер unknown, С. 106179 - 106179

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

A review of the influencing factors of building energy consumption and the prediction and optimization of energy consumption DOI Creative Commons

Zhongjiao Ma,

Z. Yan,

M. He

и другие.

AIMS energy, Год журнала: 2025, Номер 13(1), С. 35 - 85

Опубликована: Янв. 1, 2025

<p>Concomitant with the expeditious growth of construction industry, challenge building energy consumption has become increasingly pronounced. A multitude factors influence operations, thereby underscoring paramount importance monitoring and predicting such consumption. The advent big data engendered a diversification in methodologies employed to predict Against backdrop influencing operation consumption, we reviewed advancements research pertaining supervision prediction deliberated on more energy-efficient low-carbon strategies for buildings within dual-carbon context, synthesized relevant progress across four dimensions: contemporary state supervision, determinants optimization Building upon investigation three predictive were examined: (ⅰ) Physical methods, (ⅱ) data-driven (ⅲ) mixed methods. An analysis accuracy these revealed that methods exhibited superior precision actual Furthermore, predicated this foundation identified determinants, also explored prediction. Through an in-depth examination prediction, distilled pertinent accurate forecasting offering insights guidance pursuit conservation emission reduction.</p>

Язык: Английский

Процитировано

0

Isolating Urban Form Impacts on Spatiotemporal Distribution of Surface Meteorology in Coastal Cities during Extreme Heat Events DOI Creative Commons
Dun Zhu, Ryozo Ooka

Sustainable Cities and Society, Год журнала: 2025, Номер unknown, С. 106242 - 106242

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Development of representative city region models for south China’s Pearl River Delta: Data statistics and model definition DOI
Siwei Lou,

Chunguang Huang,

Yukai Zou

и другие.

Energy and Buildings, Год журнала: 2025, Номер unknown, С. 115653 - 115653

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0