Building and Environment, Год журнала: 2024, Номер 267, С. 112307 - 112307
Опубликована: Ноя. 12, 2024
Язык: Английский
Building and Environment, Год журнала: 2024, Номер 267, С. 112307 - 112307
Опубликована: Ноя. 12, 2024
Язык: Английский
International Journal of Human-Computer Interaction, Год журнала: 2024, Номер unknown, С. 1 - 23
Опубликована: Март 8, 2024
The study aims to explore the factors that influence university students' behavioral intention (BI) and use behavior (UB) of generative AI products from an ethical perspective. Referring decision-making theory, research model extends UTAUT2 with three influencing factors: awareness (EA), perceived risks (PER), anxiety (AIEA). A sample 226 students was analysed using Partial Least Squares Structural Equation Modelling technique (PLS-SEM). results further validate effectiveness UTAUT2. Furthermore, performance expectancy, hedonistic motivation, price value, social all positively BI products, except for effort expectancy. Facilitating conditions habit show no significant impact on BI, but they can determine UB. extended perspective play roles as well. AIEA PER are not key determinants BI. However, directly inhibit From mediation analysis, although do have a direct UB, it inhibits UB indirectly through AIEA. Ethical Nevertheless, also increase PER. These findings help better accept ethically products.
Язык: Английский
Процитировано
23Building Simulation, Год журнала: 2025, Номер unknown
Опубликована: Янв. 22, 2025
Язык: Английский
Процитировано
3Building and Environment, Год журнала: 2024, Номер unknown, С. 112163 - 112163
Опубликована: Окт. 1, 2024
Язык: Английский
Процитировано
6Buildings, Год журнала: 2024, Номер 14(6), С. 1712 - 1712
Опубликована: Июнь 7, 2024
This article presents a comparative analysis of two prominent machine learning techniques for predicting electricity consumption in workplace lighting systems: polynomial regression and artificial neural networks. The primary objective is to assess their suitability applicability developing an accurate predictive model. After brief overview the current state energy-saving techniques, examines several established models energy buildings systems. These include networks, support vector machines. It then focuses on practical comparison between network-based looks at data preparation process, outlining how used within each model establish appropriate prediction functions. Finally, it describes methods evaluate accuracy developed functions allow based external intensity. evaluates using root mean square error, correlation coefficient determination values. compares these values obtained both models, allowing conclusive assessment which provides superior
Язык: Английский
Процитировано
5Automation in Construction, Год журнала: 2024, Номер 166, С. 105638 - 105638
Опубликована: Июль 27, 2024
Язык: Английский
Процитировано
5Building and Environment, Год журнала: 2025, Номер unknown, С. 112743 - 112743
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Building and Environment, Год журнала: 2025, Номер unknown, С. 112856 - 112856
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Building and Environment, Год журнала: 2025, Номер unknown, С. 112864 - 112864
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Journal of Building Engineering, Год журнала: 2025, Номер unknown, С. 112410 - 112410
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Building and Environment, Год журнала: 2025, Номер unknown, С. 113054 - 113054
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0