Energy, Год журнала: 2019, Номер 187, С. 115940 - 115940
Опубликована: Авг. 12, 2019
Язык: Английский
Energy, Год журнала: 2019, Номер 187, С. 115940 - 115940
Опубликована: Авг. 12, 2019
Язык: Английский
Energy Conversion and Management, Год журнала: 2019, Номер 198, С. 111799 - 111799
Опубликована: Июль 17, 2019
Язык: Английский
Процитировано
875Renewable and Sustainable Energy Reviews, Год журнала: 2020, Номер 124, С. 109792 - 109792
Опубликована: Март 2, 2020
Язык: Английский
Процитировано
849International Journal of Information Management, Год журнала: 2020, Номер 53, С. 102104 - 102104
Опубликована: Апрель 20, 2020
Язык: Английский
Процитировано
695International Journal of Forecasting, Год журнала: 2022, Номер 38(3), С. 705 - 871
Опубликована: Янв. 20, 2022
Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds future is both exciting challenging, with individuals organisations seeking to minimise risks maximise utilities. large number forecasting applications calls for a diverse set methods tackle real-life challenges. This article provides non-systematic review theory practice forecasting. We provide an overview wide range theoretical, state-of-the-art models, methods, principles, approaches prepare, produce, organise, evaluate forecasts. then demonstrate how such theoretical concepts are applied in variety contexts. do not claim this exhaustive list applications. However, we wish our encyclopedic presentation will offer point reference rich work undertaken over last decades, some key insights practice. Given its nature, intended mode reading non-linear. cross-references allow readers navigate through various topics. complement covered by lists free or open-source software implementations publicly-available databases.
Язык: Английский
Процитировано
560Energy Conversion and Management, Год журнала: 2020, Номер 212, С. 112766 - 112766
Опубликована: Апрель 10, 2020
Язык: Английский
Процитировано
512Energy, Год журнала: 2021, Номер 224, С. 120109 - 120109
Опубликована: Фев. 19, 2021
Язык: Английский
Процитировано
384IET Renewable Power Generation, Год журнала: 2019, Номер 13(7), С. 1009 - 1023
Опубликована: Фев. 7, 2019
The modernisation of the world has significantly reduced prime sources energy such as coal, diesel and gas. Thus, alternative based on renewable have been a major focus nowadays to meet world's demand at same time reduce global warming. Among these sources, solar is source that used generate electricity through photovoltaic (PV) system. However, performance power generated highly sensitive climate seasonal factors. unpredictable behaviour affects output causes an unfavourable impact stability, reliability operation grid. Thus accurate forecasting PV crucial requirement ensure stability This study provides systematic critical review methods forecast with main metaheuristic machine learning methods. Advantages disadvantages each method are summarised, historical data along horizons input parameters. Finally, comprehensive comparison between compiled assist researchers in choosing best technique for future research.
Язык: Английский
Процитировано
368Energy, Год журнала: 2019, Номер 189, С. 116225 - 116225
Опубликована: Сен. 26, 2019
Язык: Английский
Процитировано
348Applied Energy, Год журнала: 2020, Номер 283, С. 116239 - 116239
Опубликована: Дек. 4, 2020
Forecasting the power production of grid-connected photovoltaic (PV) plants is essential for both profitability and prospects technology. Physically inspired modelling represents a common approach in calculating expected output from numerical weather prediction data. The model selection has high effect on physical PV forecasting accuracy, as difference between most least accurate chains 13% mean absolute error (MAE), 12% root square (RMSE), 23–33% skill scores plant average. forecast performance analysis performed verified one-year 15-min resolution data 16 Hungary day-ahead intraday time horizons all possible combinations nine direct diffuse irradiance separation, ten tilted transposition, three reflection loss, five cell temperature, four module performance, two shading inverter models. critical calculation steps are identified separation transposition modelling, while models important. Absolute squared errors conflicting metrics, more detailed result lowest MAE, simplest ones have RMSE. Wind speed forecasts only marginal prediction. results this study contribute to deeper understanding research community, main conclusions also beneficial owners preparing their generation forecasts.
Язык: Английский
Процитировано
268Energy Conversion and Management, Год журнала: 2020, Номер 214, С. 112909 - 112909
Опубликована: Май 1, 2020
Язык: Английский
Процитировано
266