Energy, Год журнала: 2019, Номер 187, С. 115940 - 115940
Опубликована: Авг. 12, 2019
Язык: Английский
Energy, Год журнала: 2019, Номер 187, С. 115940 - 115940
Опубликована: Авг. 12, 2019
Язык: Английский
Applied Sciences, Год журнала: 2020, Номер 10(2), С. 487 - 487
Опубликована: Янв. 9, 2020
Forecasting is a crucial task for successfully integrating photovoltaic (PV) output power into the grid. The design of accurate forecasters remains challenging issue, particularly multistep-ahead prediction. Accurate PV forecasting critical in number applications, such as micro-grids (MGs), energy optimization and management, integrated smart buildings, electrical vehicle chartering. Over last decade, vast literature has been produced on this topic, investigating numerical probabilistic methods, physical models, artificial intelligence (AI) techniques. This paper aims at providing complete review recent applications AI techniques; we will focus machine learning (ML), deep (DL), hybrid these branches are becoming increasingly attractive. Special attention be paid to development application DL, well future trends topic.
Язык: Английский
Процитировано
249Energies, Год журнала: 2019, Номер 12(9), С. 1621 - 1621
Опубликована: Апрель 29, 2019
We compare the 24-hour ahead forecasting performance of two methods commonly used for prediction power output photovoltaic systems. Both are based on Artificial Neural Networks (ANN), which have been trained same dataset, thus enabling a much-needed homogeneous comparison currently lacking in available literature. The dataset consists an hourly series simultaneous climatic and PV system parameters covering entire year, has clustered to distinguish sunny from cloudy days separately train ANN. One method feeds only while other is hybrid as it relies upon daily weather forecast. For days, first shows very good stable performance, with almost constant Normalized Mean Absolute Error, NMAE%, all cases (1% < NMAE% 2%); even better (NMAE% 1%) considered this analysis, but overall less > 2% up 5.3% cases). both typically drops; rather that does not use forecasts, varies significantly analysis.
Язык: Английский
Процитировано
239International Journal of Electrical Power & Energy Systems, Год журнала: 2019, Номер 118, С. 105790 - 105790
Опубликована: Дек. 31, 2019
Язык: Английский
Процитировано
224International Journal of Energy Research, Год журнала: 2020, Номер 45(1), С. 6 - 35
Опубликована: Июнь 25, 2020
Язык: Английский
Процитировано
210Energy, Год журнала: 2021, Номер 232, С. 120996 - 120996
Опубликована: Май 20, 2021
Язык: Английский
Процитировано
206Journal of Cleaner Production, Год журнала: 2019, Номер 227, С. 589 - 612
Опубликована: Апрель 12, 2019
Язык: Английский
Процитировано
201Applied Energy, Год журнала: 2021, Номер 295, С. 117061 - 117061
Опубликована: Май 6, 2021
Язык: Английский
Процитировано
192Energies, Год журнала: 2020, Номер 13(24), С. 6623 - 6623
Опубликована: Дек. 15, 2020
Presently, deep learning models are an alternative solution for predicting solar energy because of their accuracy. The present study reviews handling time-series data to predict irradiance and photovoltaic (PV) power. We selected three standalone one hybrid model the discussion, namely, recurrent neural network (RNN), long short-term memory (LSTM), gated unit (GRU), convolutional network-LSTM (CNN–LSTM). were compared based on accuracy, input data, forecasting horizon, type season weather, training time. performance analysis shows that these have strengths limitations in different conditions. Generally, models, LSTM best regarding root-mean-square error evaluation metric (RMSE). On other hand, (CNN–LSTM) outperforms although it requires longer most significant finding is interest more suitable PV power than conventional machine models. Additionally, we recommend using relative RMSE as representative facilitate accuracy comparison between studies.
Язык: Английский
Процитировано
190IEEE Access, Год журнала: 2020, Номер 8, С. 77364 - 77377
Опубликована: Янв. 1, 2020
One of the most challenging areas Future Smart Cities Research is Energy domain. Critical issues related to optimization, provision smart customizable networks and sophisticated computational techniques methods enabled by artificial intelligence machine learning need further investigation. The renewable energy (RE) a powerful resource for future global development in context climate change resources depletion. Artificial (AI) implies new rules organizing activities order respond these requirements. It necessary improve design infrastructure, deployment production RE face multiple challenges that will affect sector’s growth resilience.. In this research work we exploit recent developments on AI adoption sector European Union (EU). respect, analysed (i) efficiency transformation processes within chain from Gross Inland Consumption Final Consumption, (ii) its implications structure source (solar, wind, biomass etc.), (iii) labour productivity compared economy as whole correlation with investments level, (iv) implication towards Research. main contribution framework understanding Europe. Another bold discussion directions.
Язык: Английский
Процитировано
185Renewable and Sustainable Energy Reviews, Год журнала: 2021, Номер 153, С. 111758 - 111758
Опубликована: Окт. 25, 2021
Язык: Английский
Процитировано
185