A theory-guided deep-learning method for predicting power generation of multi-region photovoltaic plants DOI

Jian Du,

Jianqin Zheng, Yongtu Liang

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2022, Номер 118, С. 105647 - 105647

Опубликована: Ноя. 28, 2022

Язык: Английский

Forecasting and uncertainty analysis of day-ahead photovoltaic power using a novel forecasting method DOI
Bo Gu,

Huiqiang Shen,

Xiaohui Lei

и другие.

Applied Energy, Год журнала: 2021, Номер 299, С. 117291 - 117291

Опубликована: Июнь 24, 2021

Язык: Английский

Процитировано

117

Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy DOI
Yugui Tang, Kuo Yang, Shujing Zhang

и другие.

Renewable and Sustainable Energy Reviews, Год журнала: 2022, Номер 162, С. 112473 - 112473

Опубликована: Апрель 21, 2022

Язык: Английский

Процитировано

92

LOWESS smoothing and Random Forest based GRU model: A short-term photovoltaic power generation forecasting method DOI

Yeming Dai,

Yanxin Wang, Mingming Leng

и другие.

Energy, Год журнала: 2022, Номер 256, С. 124661 - 124661

Опубликована: Июнь 28, 2022

Язык: Английский

Процитировано

77

An enhanced multivariable dynamic time-delay discrete grey forecasting model for predicting China's carbon emissions DOI
Li Ye,

Deling Yang,

Yaoguo Dang

и другие.

Energy, Год журнала: 2022, Номер 249, С. 123681 - 123681

Опубликована: Март 9, 2022

Язык: Английский

Процитировано

71

Short-term photovoltaic power point-interval forecasting based on double-layer decomposition and WOA-BiLSTM-Attention and considering weather classification DOI
Min Yu, Dongxiao Niu, Keke Wang

и другие.

Energy, Год журнала: 2023, Номер 275, С. 127348 - 127348

Опубликована: Апрель 6, 2023

Язык: Английский

Процитировано

59

Energy Forecasting: A Comprehensive Review of Techniques and Technologies DOI Creative Commons
Aristeidis Mystakidis, Paraskevas Koukaras, Nikolaos Tsalikidis

и другие.

Energies, Год журнала: 2024, Номер 17(7), С. 1662 - 1662

Опубликована: Март 30, 2024

Distribution System Operators (DSOs) and Aggregators benefit from novel energy forecasting (EF) approaches. Improved accuracy may make it easier to deal with imbalances between generation consumption. It also helps operations such as Demand Response Management (DRM) in Smart Grid (SG) architectures. For utilities, companies, consumers manage resources effectively educated decisions about consumption, EF is essential. many applications, Energy Load Forecasting (ELF), Generation (EGF), grid stability, accurate crucial. The state of the art examined this literature review, emphasising cutting-edge techniques technologies their significance for industry. gives an overview statistical, Machine Learning (ML)-based, Deep (DL)-based methods ensembles that form basis EF. Various time-series are explored, including sequence-to-sequence, recursive, direct forecasting. Furthermore, evaluation criteria reported, namely, relative absolute metrics Mean Absolute Error (MAE), Root Square (RMSE), Percentage (MAPE), Coefficient Determination (R2), Variation (CVRMSE), well Execution Time (ET), which used gauge prediction accuracy. Finally, overall step-by-step standard methodology often utilised problems presented.

Язык: Английский

Процитировано

31

Deep learning model for short-term photovoltaic power forecasting based on variational mode decomposition and similar day clustering DOI
Meng Li, Wei Wang, Yan He

и другие.

Computers & Electrical Engineering, Год журнала: 2024, Номер 115, С. 109116 - 109116

Опубликована: Фев. 15, 2024

Язык: Английский

Процитировано

23

Short-term PV power prediction based on meteorological similarity days and SSA-BiLSTM DOI Creative Commons
Yikang Li, Wei Huang,

Keying Lou

и другие.

Systems and Soft Computing, Год журнала: 2024, Номер 6, С. 200084 - 200084

Опубликована: Фев. 23, 2024

Accurate short-term photovoltaic (PV) power forecasting can reduce the un- certainty of PV generation, which is crucial for grid operation as well energy dispatch. Considering influence seasonal and meteorological factors on prediction, a predic- tion method based similarity day sparrow search algo- rithm bi-directional long memory network combination (SSA-BiLSTM) proposed. Firstly, correlation between generation calculated by using Pearson coefficients, getting strongly correlated affecting generation; afterwards,the historical data are clustered fuzzy C-means clustering to achieve similar clustering; then, best selected from according test features data, Forming training set with original BiLSTM network. SSA algorithm was used find optimal parameters. Finally, Using parameters construct prediction. The experiments were conducted plant in Xinjiang, also compared existing prediction algorithms.The results show that accuracy different weather conditions 33.1 %, 31.9 % 24.1 higher than under same intelligent optimization neural networks, 27.9 24.7 18.0 algorithms Therefore, this paper has better seasons conditions.

Язык: Английский

Процитировано

17

A hybrid ensemble optimized BiGRU method for short-term photovoltaic generation forecasting DOI

Yeming Dai,

Weijie Yu, Mingming Leng

и другие.

Energy, Год журнала: 2024, Номер 299, С. 131458 - 131458

Опубликована: Апрель 27, 2024

Язык: Английский

Процитировано

17

Forecasting the sales and stock of electric vehicles using a novel self-adaptive optimized grey model DOI
Song Ding, Ruojin Li

Engineering Applications of Artificial Intelligence, Год журнала: 2021, Номер 100, С. 104148 - 104148

Опубликована: Янв. 13, 2021

Язык: Английский

Процитировано

93