Engineering Applications of Artificial Intelligence, Год журнала: 2022, Номер 118, С. 105647 - 105647
Опубликована: Ноя. 28, 2022
Язык: Английский
Engineering Applications of Artificial Intelligence, Год журнала: 2022, Номер 118, С. 105647 - 105647
Опубликована: Ноя. 28, 2022
Язык: Английский
Applied Energy, Год журнала: 2021, Номер 299, С. 117291 - 117291
Опубликована: Июнь 24, 2021
Язык: Английский
Процитировано
117Renewable and Sustainable Energy Reviews, Год журнала: 2022, Номер 162, С. 112473 - 112473
Опубликована: Апрель 21, 2022
Язык: Английский
Процитировано
92Energy, Год журнала: 2022, Номер 256, С. 124661 - 124661
Опубликована: Июнь 28, 2022
Язык: Английский
Процитировано
77Energy, Год журнала: 2022, Номер 249, С. 123681 - 123681
Опубликована: Март 9, 2022
Язык: Английский
Процитировано
71Energy, Год журнала: 2023, Номер 275, С. 127348 - 127348
Опубликована: Апрель 6, 2023
Язык: Английский
Процитировано
59Energies, Год журнала: 2024, Номер 17(7), С. 1662 - 1662
Опубликована: Март 30, 2024
Distribution System Operators (DSOs) and Aggregators benefit from novel energy forecasting (EF) approaches. Improved accuracy may make it easier to deal with imbalances between generation consumption. It also helps operations such as Demand Response Management (DRM) in Smart Grid (SG) architectures. For utilities, companies, consumers manage resources effectively educated decisions about consumption, EF is essential. many applications, Energy Load Forecasting (ELF), Generation (EGF), grid stability, accurate crucial. The state of the art examined this literature review, emphasising cutting-edge techniques technologies their significance for industry. gives an overview statistical, Machine Learning (ML)-based, Deep (DL)-based methods ensembles that form basis EF. Various time-series are explored, including sequence-to-sequence, recursive, direct forecasting. Furthermore, evaluation criteria reported, namely, relative absolute metrics Mean Absolute Error (MAE), Root Square (RMSE), Percentage (MAPE), Coefficient Determination (R2), Variation (CVRMSE), well Execution Time (ET), which used gauge prediction accuracy. Finally, overall step-by-step standard methodology often utilised problems presented.
Язык: Английский
Процитировано
31Computers & Electrical Engineering, Год журнала: 2024, Номер 115, С. 109116 - 109116
Опубликована: Фев. 15, 2024
Язык: Английский
Процитировано
23Systems and Soft Computing, Год журнала: 2024, Номер 6, С. 200084 - 200084
Опубликована: Фев. 23, 2024
Accurate short-term photovoltaic (PV) power forecasting can reduce the un- certainty of PV generation, which is crucial for grid operation as well energy dispatch. Considering influence seasonal and meteorological factors on prediction, a predic- tion method based similarity day sparrow search algo- rithm bi-directional long memory network combination (SSA-BiLSTM) proposed. Firstly, correlation between generation calculated by using Pearson coefficients, getting strongly correlated affecting generation; afterwards,the historical data are clustered fuzzy C-means clustering to achieve similar clustering; then, best selected from according test features data, Forming training set with original BiLSTM network. SSA algorithm was used find optimal parameters. Finally, Using parameters construct prediction. The experiments were conducted plant in Xinjiang, also compared existing prediction algorithms.The results show that accuracy different weather conditions 33.1 %, 31.9 % 24.1 higher than under same intelligent optimization neural networks, 27.9 24.7 18.0 algorithms Therefore, this paper has better seasons conditions.
Язык: Английский
Процитировано
17Energy, Год журнала: 2024, Номер 299, С. 131458 - 131458
Опубликована: Апрель 27, 2024
Язык: Английский
Процитировано
17Engineering Applications of Artificial Intelligence, Год журнала: 2021, Номер 100, С. 104148 - 104148
Опубликована: Янв. 13, 2021
Язык: Английский
Процитировано
93