Engineering Applications of Artificial Intelligence, Год журнала: 2022, Номер 118, С. 105647 - 105647
Опубликована: Ноя. 28, 2022
Язык: Английский
Engineering Applications of Artificial Intelligence, Год журнала: 2022, Номер 118, С. 105647 - 105647
Опубликована: Ноя. 28, 2022
Язык: Английский
Applied Energy, Год журнала: 2021, Номер 298, С. 117114 - 117114
Опубликована: Июнь 8, 2021
Язык: Английский
Процитировано
90Applied Sciences, Год журнала: 2021, Номер 11(16), С. 7550 - 7550
Опубликована: Авг. 17, 2021
In the current era, Artificial Intelligence (AI) is becoming increasingly pervasive with applications in several applicative fields effectively changing our daily life. this scenario, machine learning (ML), a subset of AI techniques, provides machines ability to programmatically learn from data model system while adapting new situations as they more by are ingesting (on-line training). During last years, many papers have been published concerning ML field solar systems. This paper presents state art models applied energy’s forecasting i.e., for irradiance and power production (both point interval or probabilistic forecasting), electricity price energy demand forecasting. Other into photovoltaic (PV) taken account modelling PV modules, design parameter extraction, tracking maximum (MPP), systems efficiency optimization, PV/Thermal (PV/T) Concentrating (CPV) parameters’ optimization improvement, anomaly detection management PV’s storage While review already exist regard, usually focused only on one specific topic, gathered all most relevant different fields. The gives an overview recent promising used
Язык: Английский
Процитировано
76Applied Mathematical Modelling, Год журнала: 2021, Номер 99, С. 260 - 275
Опубликована: Июль 1, 2021
Язык: Английский
Процитировано
69Environmental Pollution, Год журнала: 2021, Номер 276, С. 116614 - 116614
Опубликована: Фев. 7, 2021
Язык: Английский
Процитировано
68IEEE Access, Год журнала: 2021, Номер 9, С. 105939 - 105950
Опубликована: Янв. 1, 2021
Photovoltaic (PV) power generation is affected by many meteorological factors and environmental factors, which has obvious intermittent, random, volatile characteristics. To improve the accuracy of short-term PV prediction, a hybrid model (VMD-ISSA-GRU) based on variational mode decomposition (VMD), improved sparrow search algorithm (ISSA) gated recurrent unit (GRU) proposed. First all, time series decomposed into different subsequences VMD to reduce non-stationarity original data. Then, main affecting are obtained using correlation coefficients Spearman Pearson, reduces computational complexity model. Finally, GRU network optimized ISSA used predict all residual error VMD, prediction results reconstructed. The show that VMD-ISSA-GRU stronger adaptability higher than other traditional models. mean absolute (MAE) in whole test set 1.0128 kW, root square (RMSE) 1.5511 R adj 2 can reach 0.9993.
Язык: Английский
Процитировано
67Applied Energy, Год журнала: 2022, Номер 312, С. 118725 - 118725
Опубликована: Фев. 18, 2022
Язык: Английский
Процитировано
65Applied Energy, Год журнала: 2022, Номер 325, С. 119854 - 119854
Опубликована: Авг. 24, 2022
Язык: Английский
Процитировано
65Communications in Nonlinear Science and Numerical Simulation, Год журнала: 2021, Номер 99, С. 105847 - 105847
Опубликована: Апрель 3, 2021
Язык: Английский
Процитировано
63Expert Systems with Applications, Год журнала: 2021, Номер 186, С. 115761 - 115761
Опубликована: Авг. 17, 2021
Язык: Английский
Процитировано
61Energy, Год журнала: 2021, Номер 239, С. 121928 - 121928
Опубликована: Авг. 30, 2021
Язык: Английский
Процитировано
61