Robust Runoff Prediction With Explainable Artificial Intelligence and Meteorological Variables From Deep Learning Ensemble Model DOI Open Access
Junhao Wu, Zhaocai Wang, Jinghan Dong

и другие.

Water Resources Research, Год журнала: 2023, Номер 59(9)

Опубликована: Сен. 1, 2023

Abstract Accurate runoff forecasting plays a vital role in issuing timely flood warnings. Whereas, previous research has primarily focused on historical and precipitation variability while disregarding other factors' influence. Additionally, the prediction process of most machine learning models is opaque, resulting low interpretability model predictions. Hence, this study develops an ensemble deep to forecast from three hydrological stations. Initially, time‐varying filtered based empirical mode decomposition employed decompose series into several internal functions (IMFs). Subsequently, complexity each IMF component evaluated by multi‐scale permutation entropy, IMFs are classified high‐ low‐frequency portions entropy values. Considering high‐frequency still exhibit great volatility, robust local mean adopted perform secondary portions. Then, meteorological variables processed Relief algorithm variance inflation factor features as inputs, individual subsequences preliminary outputs bidirectional gated recurrent unit extreme models. Random forests (RF) introduced nonlinear predicted sub‐models obtain final results. The proposed outperforms various evaluation metrics. Meanwhile, due opaque nature models, shapley assess contribution selected variable long‐term trend runoff. could serve essential reference for precise warning.

Язык: Английский

A dual-scale deep learning model based on ELM-BiLSTM and improved reptile search algorithm for wind power prediction DOI

Jinlin Xiong,

Peng Tian,

Zihan Tao

и другие.

Energy, Год журнала: 2022, Номер 266, С. 126419 - 126419

Опубликована: Дек. 13, 2022

Язык: Английский

Процитировано

154

A novel offshore wind farm typhoon wind speed prediction model based on PSO–Bi-LSTM improved by VMD DOI
Jiale Li,

Zihao Song,

Xuefei Wang

и другие.

Energy, Год журнала: 2022, Номер 251, С. 123848 - 123848

Опубликована: Апрель 4, 2022

Язык: Английский

Процитировано

125

An evolutionary deep learning model based on TVFEMD, improved sine cosine algorithm, CNN and BiLSTM for wind speed prediction DOI
Chu Zhang,

Huixin Ma,

Lei Hua

и другие.

Energy, Год журнала: 2022, Номер 254, С. 124250 - 124250

Опубликована: Май 14, 2022

Язык: Английский

Процитировано

104

Wind speed prediction using a hybrid model of EEMD and LSTM considering seasonal features DOI Creative Commons
Yi Yan, Xuerui Wang, Fei Ren

и другие.

Energy Reports, Год журнала: 2022, Номер 8, С. 8965 - 8980

Опубликована: Июль 14, 2022

As a clean and renewable energy source, wind power is of great significance for addressing global shortages environmental pollution. However, the uncertainty speed hinders direct use power, resulting in high proportion abandoned wind. Therefore, accurate prediction improving utilization rate energy. In this study, hybrid model proposed based on seasonal autoregressive integrated moving average (SARIMA), ensemble empirical mode decomposition (EEMD), long short-term memory (LSTM) methods. First, original data were resampled to obtain within time scales 15, 30, 60 min. The SARIMA was used extract linear features nonlinear residual sequences series at different scales, EEMD decompose sequence intrinsic functions (IMFs) sub-residual sequences. For IMFs obtained after decomposition, LSTM method training, predicted IMFs, sequence, series, final speed. To verify superiority large farm as case study. Finally, compared with other models, verifying that experimental has higher accuracy.

Язык: Английский

Процитировано

79

Wind speed prediction by a swarm intelligence based deep learning model via signal decomposition and parameter optimization using improved chimp optimization algorithm DOI

Leiming Suo,

Peng Tian,

Shihao Song

и другие.

Energy, Год журнала: 2023, Номер 276, С. 127526 - 127526

Опубликована: Апрель 14, 2023

Язык: Английский

Процитировано

76

Rolling bearing fault diagnosis based on 2D time-frequency images and data augmentation technique DOI
Wenlong Fu,

Xiaohui Jiang,

Bailin Li

и другие.

Measurement Science and Technology, Год журнала: 2022, Номер 34(4), С. 045005 - 045005

Опубликована: Дек. 15, 2022

Abstract It confronts great difficulty to apply the traditional rolling bearing fault diagnosis methods adaptively extract features conducive under complex operating conditions, and obtaining numerous data real conditions is difficult costly. To address this problem, a method based on two-dimensional time-frequency images augmentation proposed. begin with, original one-dimensional time series signal converted into by continuous wavelet transform obtain input suitable for convolutional neural network (CNN). Secondly, technique employed expand labeled data. Finally, generated are served as training samples train model CNNs. Experimental studies conducted standard real-world datasets validate proposed demonstrate its superiority over in detecting faults.

Язык: Английский

Процитировано

74

A novel integrated photovoltaic power forecasting model based on variational mode decomposition and CNN-BiGRU considering meteorological variables DOI
Chu Zhang, Peng Tian, Muhammad Shahzad Nazir

и другие.

Electric Power Systems Research, Год журнала: 2022, Номер 213, С. 108796 - 108796

Опубликована: Сен. 14, 2022

Язык: Английский

Процитировано

73

Evolutionary quantile regression gated recurrent unit network based on variational mode decomposition, improved whale optimization algorithm for probabilistic short-term wind speed prediction DOI
Chu Zhang, Chunlei Ji, Lei Hua

и другие.

Renewable Energy, Год журнала: 2022, Номер 197, С. 668 - 682

Опубликована: Авг. 2, 2022

Язык: Английский

Процитировано

70

A dual-optimization wind speed forecasting model based on deep learning and improved dung beetle optimization algorithm DOI
Yanhui Li, Kaixuan Sun, Qi Yao

и другие.

Energy, Год журнала: 2023, Номер 286, С. 129604 - 129604

Опубликована: Ноя. 7, 2023

Язык: Английский

Процитировано

69

A convolutional Transformer-based truncated Gaussian density network with data denoising for wind speed forecasting DOI
Yun Wang, Houhua Xu, Mengmeng Song

и другие.

Applied Energy, Год журнала: 2023, Номер 333, С. 120601 - 120601

Опубликована: Янв. 5, 2023

Язык: Английский

Процитировано

62