An evaluation method for wake effect of wind farm group based on CFD-WRF coupled wind resource map DOI
Junpeng Ma, Feiyan Liu,

Chenggang Xiao

и другие.

Journal of Intelligent & Fuzzy Systems, Год журнала: 2023, Номер 45(6), С. 11425 - 11437

Опубликована: Окт. 3, 2023

The wake effect of wind farm can reduce the incoming speed at turbine located in downstream direction, resulting decrease global output. WRF model adopts a three-layer two-way nested grid division scheme to simulate upper atmospheric circulation, obtain speed, direction and other data that truly reproduce fluid characteristics regional group. boundary conditions solution CFD are set, computational dynamics region is obtained. coupled with CFD, Fitch introduced into it. By introducing drag coefficient calculation turbulent kinetic energy CFD-WRF coupling model, field simulated online. Monte Carlo sampling method used random resource then sampled calculate group output farms, evaluate impact on treatment. experimental results show this effectively analyze characteristic field, time RANS about 3 s. Due effect, overall efficiency will be significantly reduced.

Язык: Английский

Wind turbine fault detection based on the transformer model using SCADA data DOI Creative Commons
Jorge Maldonado-Correa, Joel Torres-Cabrera, Sergio Martín‐Martínez

и другие.

Engineering Failure Analysis, Год журнала: 2024, Номер 162, С. 108354 - 108354

Опубликована: Апрель 27, 2024

The growth of installed wind power worldwide and its significant contribution to the energy market is mainly due evolution turbines (WTs) their ability withstand a wide range dynamic loads. WT failures can be costly lead extended downtime. Early detection such critical in reducing costs associated with operation maintenance (O&M) tasks unscheduled shutdowns WTs. This paper applies two Deep Learning (DL) models based on Transformer model predict IGBT module WTs at an onshore farm Ecuador. To this end, SCADA (Supervisory Control Data Acquisition) operational alarm data are used, together record (MR). These analyzed processed, applying different feature selection methods. results show that proposed perform well, high accuracy approximate prediction 4.25 months before failure occurrence. promising possibility using for early accurate identification faults components

Язык: Английский

Процитировано

14

InfoCAVB-MemoryFormer: Forecasting of wind and photovoltaic power through the interaction of data reconstruction and data augmentation DOI
Mingwei Zhong,

J.M. Fan,

Jianqiang Luo

и другие.

Applied Energy, Год журнала: 2024, Номер 371, С. 123745 - 123745

Опубликована: Июнь 20, 2024

Язык: Английский

Процитировано

6

Integration of atmospheric stability in wind resource assessment through multi-scale coupling method DOI

Jingxin Jin,

Yilin Li, Lin Ye

и другие.

Applied Energy, Год журнала: 2023, Номер 348, С. 121402 - 121402

Опубликована: Июль 3, 2023

Язык: Английский

Процитировано

9

A Hybrid Approach to Wind Power Intensity Classification Using Decision Trees and Large Language Models DOI Creative Commons
Tahir Çetin Akıncı, H. Selçuk Noğay, Miroslav Penchev

и другие.

Renewable Energy, Год журнала: 2025, Номер unknown, С. 123388 - 123388

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

Identifying and understanding how critical landscapes for carbon sequestration respond to development for low carbon energy production: Insight to inform optimal land planning and management strategies DOI
Susan Waldron, Kate V. Heal, Amira Elayouty

и другие.

Journal of Environmental Management, Год журнала: 2025, Номер 385, С. 125063 - 125063

Опубликована: Май 10, 2025

Язык: Английский

Процитировано

0

Evaluation of the topology anisotropy effect on wake development over complex terrain based on a novel method and verified by LiDAR measurements DOI

Xu Zongyuan,

Xiaoxia Gao,

Lu Hongkun

и другие.

Energy Conversion and Management, Год журнала: 2024, Номер 322, С. 119154 - 119154

Опубликована: Окт. 25, 2024

Язык: Английский

Процитировано

1

A Bayesian Deep Learning-Based Adaptive Wind Farm Power Prediction Method Within the Entire Life Cycle DOI
Xiaoming Liu, Jun Liu, Yu Zhao

и другие.

IEEE Transactions on Sustainable Energy, Год журнала: 2024, Номер 15(4), С. 2663 - 2674

Опубликована: Июль 30, 2024

Язык: Английский

Процитировано

0

Neurocontrolled Prediction of Blade Position in Wind Generators DOI
Elvis Condor Umaginga,

Emerson Ordoñez Paccha,

William Montalvo

и другие.

Lecture notes in networks and systems, Год журнала: 2024, Номер unknown, С. 466 - 481

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

0

An evaluation method for wake effect of wind farm group based on CFD-WRF coupled wind resource map DOI
Junpeng Ma, Feiyan Liu,

Chenggang Xiao

и другие.

Journal of Intelligent & Fuzzy Systems, Год журнала: 2023, Номер 45(6), С. 11425 - 11437

Опубликована: Окт. 3, 2023

The wake effect of wind farm can reduce the incoming speed at turbine located in downstream direction, resulting decrease global output. WRF model adopts a three-layer two-way nested grid division scheme to simulate upper atmospheric circulation, obtain speed, direction and other data that truly reproduce fluid characteristics regional group. boundary conditions solution CFD are set, computational dynamics region is obtained. coupled with CFD, Fitch introduced into it. By introducing drag coefficient calculation turbulent kinetic energy CFD-WRF coupling model, field simulated online. Monte Carlo sampling method used random resource then sampled calculate group output farms, evaluate impact on treatment. experimental results show this effectively analyze characteristic field, time RANS about 3 s. Due effect, overall efficiency will be significantly reduced.

Язык: Английский

Процитировано

0