Опубликована: Сен. 18, 2024
Язык: Английский
Опубликована: Сен. 18, 2024
Язык: Английский
Опубликована: Янв. 1, 2024
Download This Paper Open PDF in Browser Add to My Library Share: Permalink Using these links will ensure access this page indefinitely Copy URL DOI
Язык: Английский
Процитировано
0Опубликована: Март 6, 2024
Язык: Английский
Процитировано
0Energies, Год журнала: 2024, Номер 17(21), С. 5493 - 5493
Опубликована: Ноя. 2, 2024
This paper proposes a method based on Computational Fluid Dynamics (CFD) and the detection of Wind Energy Extraction Latency for given wind turbine (WT) designed ultra-short-term (UST) energy forecasting over complex terrain. The core suggested modeling approach is Spatial Extrapolation model (WiSpEx). Measured vertical profile data are used as inlet stationary CFD simulations to reconstruct flow farm (WF). field reconstruction helps operators obtain speed available at hub height installed WTs, enabling estimation their production. WT power output calculated by accounting average time it takes adjust its in response changes speed. proposed evaluated with from two WTs (E40-500, NM 750/48). dataset this study contains ramp events speeds that range magnitude 3 m/s 18 m/s. results show can achieve Symmetric Mean Absolute Percentage Error (SMAPE) 8.44% E40-500 9.26% 750/48, even significant simplifications, while SMAPE persistence above 15.03% 16.12% 750/48. Each forecast requires less than minutes computational low-cost commercial platform. performance comparable state-of-the-art methods significantly faster time-dependent simulations. Such necessitate excessive resources, making them impractical online forecasting.
Язык: Английский
Процитировано
0E3S Web of Conferences, Год журнала: 2024, Номер 591, С. 05002 - 05002
Опубликована: Янв. 1, 2024
The rapid expansion of hybrid renewable energy microgrid systems presents new challenges in maintaining system reliability and performance. This paper explores the application machine learning algorithms for predictive maintenance such systems, focusing on early detection potential failures to optimize operational efficiency reduce downtime. By integrating real-time data from solar, wind, storage components, proposed models predict remaining useful life (RUL) critical components. results demonstrate significant improvements accuracy, offering a robust solution enhancing longevity microgrids.
Язык: Английский
Процитировано
0Опубликована: Сен. 18, 2024
Язык: Английский
Процитировано
0