Energy Sources Part A Recovery Utilization and Environmental Effects, Год журнала: 2024, Номер 46(1), С. 1 - 16
Опубликована: Июнь 26, 2024
Язык: Английский
Energy Sources Part A Recovery Utilization and Environmental Effects, Год журнала: 2024, Номер 46(1), С. 1 - 16
Опубликована: Июнь 26, 2024
Язык: Английский
Energy Conversion and Management, Год журнала: 2025, Номер 332, С. 119697 - 119697
Опубликована: Март 6, 2025
Язык: Английский
Процитировано
0Energy Conversion and Management, Год журнала: 2025, Номер 332, С. 119748 - 119748
Опубликована: Март 25, 2025
Язык: Английский
Процитировано
0Energy, Год журнала: 2025, Номер unknown, С. 135912 - 135912
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Mechanism and Machine Theory, Год журнала: 2025, Номер 210, С. 106034 - 106034
Опубликована: Апрель 14, 2025
Язык: Английский
Процитировано
0International Journal of Hydrogen Energy, Год журнала: 2024, Номер 93, С. 1258 - 1267
Опубликована: Ноя. 11, 2024
Язык: Английский
Процитировано
2World Electric Vehicle Journal, Год журнала: 2024, Номер 15(3), С. 92 - 92
Опубликована: Март 1, 2024
The present study proposes a fuzzy logical control-based real-time energy management strategy (EMS) for fuel cell electrical bus (FCEB), taking into account the durability of system (FCS), in order to enhance both vehicle’s economic performance and FCS’s service life. At first, model FCEB is established whilst power-following also formulated as benchmark evaluation proposed strategy. Subsequently, controller designed improve work efficiency FCS, which battery state-of-charge (SOC) desired power are considered inputs, FCS output. Then, limitation method integrated restrict change rate strengthen last, accessed based on China city driving cycle (CCBC). results indicate that can satisfy dynamic well. Importantly, it has remarkable effectiveness terms promoting FCEB’s economy. Despite slight reduction contrast control, improvements still acceptable. be confined ±10 kW. Meanwhile, promotion reach up 8.43%, 7.69%, 6.53% consideration under different SOCs. This will significantly benefit saving durability.
Язык: Английский
Процитировано
1Energy, Год журнала: 2024, Номер 304, С. 132144 - 132144
Опубликована: Июнь 19, 2024
Язык: Английский
Процитировано
1Energy Technology, Год журнала: 2024, Номер unknown
Опубликована: Ноя. 25, 2024
The rapid growth of the transportation sector in past few decades has contributed significantly to global warming issues, leading extensive research on vehicles having nearly zero or total tailpipe carbon emissions. automobiles within this classification belong hybrid electrical (HEVs), plug‐in HEVs, battery–electric (BEVs), fuel‐cell (FC) EVs (FCEVs), and FC HEVs. FCHEVs are powered by a combination systems, rechargeable batteries, ultracapacitors, and/or mechanical flywheels. technology appears hold potential terms extended driving distances quicker refueling times for that emit no exhaust fumes. A significant number studies have examined various types energy‐storage devices as vehicle power supply, their interfacing with drive mechanism using converters energy management strategies (EMS). In article, EMS FC‐based discussed. Classifications FCEVs, BEVs, EMSs developed researchers. review report, it is indicated existing capable performing well, yet further required better reliability intelligence toward achieving greater fuel efficiency lifetime upcoming FCHEVs.
Язык: Английский
Процитировано
1Опубликована: Янв. 1, 2024
Download This Paper Open PDF in Browser Add to My Library Share: Permalink Using these links will ensure access this page indefinitely Copy URL DOI
Язык: Английский
Процитировано
0Опубликована: Янв. 1, 2024
The energy management strategy (EMS) is the top priority to ensure safe and efficient operation of fuel cell hybrid vehicles. Nowadays, EMS based on deep reinforcement learning (DRL) has become a research hotspot. However, there lack unified comparison benchmark for DRL-based EMSs. Most EMSs not discussed impact algorithm hyperparameters, provided comprehensive evaluation indicators including cost, aging efficiency. In this paper, five different DRL methods are designed, multi-objective reward function that integrates equivalent hydrogen consumption, degradation, battery state-of-charge fluctuation its working range designed. First, hyperparameters determined convergence performance in training process. weight coefficients average consumption. Then above-mentioned compared horizontally. Finally, six driving conditions used as test sets explore adaptability results show can be effectively applied real-time environments, algorithms applications, which provide valid guidance researchers use EMS.
Язык: Английский
Процитировано
0