Enhancing Multispectral Breast Imaging Quality Through Frame Accumulation and Hybrid GA-CPSO Registration DOI Creative Commons

Tsabeeh Salah M. Mahmoud,

Adnan Munawar, Muhammad Nawaz

и другие.

Bioengineering, Год журнала: 2024, Номер 11(12), С. 1281 - 1281

Опубликована: Дек. 17, 2024

Multispectral transmission imaging has emerged as a promising technique for breast tissue with high resolution. However, the method encounters challenges such low grayscale, noisy images weak signals, primarily due to strong absorption and scattering of light in tissue. A common approach improve signal-to-noise ratio (SNR) overall image quality is frame accumulation. factors camera jitter respiratory motion during acquisition can cause misalignment, degrading accumulated image. To address these issues, this study proposes novel registration method. hybrid combining genetic algorithm (GA) constriction factor-based particle swarm optimization (CPSO), referred GA-CPSO, applied before The efficiency enhanced by incorporating squared factor (SCF), which speeds up process improves convergence towards optimal solutions. GA identifies potential solutions, are then refined CPSO expedite convergence. This methodology was validated on sequence frames taken at 600 nm, 620 670 760 nm wavelength proved enhancement accuracy various mathematical assessments. It demonstrated (99.93%) reduced time. As result, GA-CPSO significantly effectiveness accumulation enhances quality. explored groundwork precise multispectral segmentation classification.

Язык: Английский

Attack-defense strategy assisted osprey optimization algorithm for PEMFC parameters identification DOI
Yongliang Yuan,

Qingkang Yang,

Jianji Ren

и другие.

Renewable Energy, Год журнала: 2024, Номер 225, С. 120211 - 120211

Опубликована: Фев. 23, 2024

Язык: Английский

Процитировано

41

A metaheuristic particle swarm optimization for enhancing energetic and exergetic performances of hydrogen energy production from plastic waste gasification DOI
Amirreza Gharibi,

Ehsan Doniavi,

Rezgar Hasanzadeh

и другие.

Energy Conversion and Management, Год журнала: 2024, Номер 308, С. 118392 - 118392

Опубликована: Апрель 6, 2024

Язык: Английский

Процитировано

33

Experimental validation of a low-cost maximum power point tracking technique based on artificial neural network for photovoltaic systems DOI Creative Commons
A. Abou‐Zeid,

Hadeer Gaber Eleraky,

Ahmed Kalas

и другие.

Scientific Reports, Год журнала: 2024, Номер 14(1)

Опубликована: Авг. 7, 2024

Maximum power point tracking (MPPT) is a technique involved in photovoltaic (PV) systems for optimizing the output of solar panels. Traditional solutions like perturb and observe (P&O) Incremental Conductance (IC) are commonly utilized to follow MPP under various environmental circumstances. However, these algorithms suffer from slow speed low dynamics fast-changing environment conditions. To cope with demerits, data-driven artificial neural network (ANN) algorithm MPPT proposed this paper. By leveraging learning capabilities ANN, PV operating can be adapted dynamic changes irradiation temperature. Consequently, it offers promising environments as well overcoming limitations traditional techniques. In paper, simulations verification experimental validation ANN-MPPT presented. Additionally, analyzed compared methods. The numerical findings indicate that, examined methods, approach achieves highest efficiency at 98.16% shortest time 1.3 s.

Язык: Английский

Процитировано

13

Multi-Objective Optimal Scheduling of Microgrids Based on Improved Particle Swarm Algorithm DOI Creative Commons

Zhong Guan,

Hui Wang,

Zhi Li

и другие.

Energies, Год журнала: 2024, Номер 17(7), С. 1760 - 1760

Опубликована: Апрель 7, 2024

Microgrid optimization scheduling, as a crucial part of smart grid optimization, plays significant role in reducing energy consumption and environmental pollution. The development goals microgrids not only aim to meet the basic demands electricity supply but also enhance economic benefits protection. In this regard, multi-objective scheduling model for grid-connected mode is proposed, which comprehensively considers operational costs protection microgrid systems. This incorporates improvements traditional particle swarm (PSO) algorithm by considering inertia factors adaptive mutation, it utilizes improved solve model. Simulation results demonstrate that can effectively reduce users pollution, promoting optimized operation verifying superior performance PSO algorithm. After algorithmic improvements, optimal total cost achieved was CNY 836.23, representing decrease from pre-improvement value 850.

Язык: Английский

Процитировано

9

Optimal parameters identification for PEMFC using autonomous groups particle swarm optimization algorithm DOI
Medhat Hegazy Elfar, Mahmoud Fawzi,

Ahmed S. Serry

и другие.

International Journal of Hydrogen Energy, Год журнала: 2024, Номер 69, С. 1113 - 1128

Опубликована: Май 13, 2024

Язык: Английский

Процитировано

9

Operating condition optimization of heavy-duty truck PEM fuel cell for enhanced performance and durability DOI

Huu Linh Nguyen,

Younghyeon Kim,

Sangseok Yu

и другие.

International Journal of Hydrogen Energy, Год журнала: 2025, Номер 115, С. 326 - 343

Опубликована: Март 11, 2025

Язык: Английский

Процитировано

1

A metaheuristic Multi-Objective optimization of energy and environmental performances of a Waste-to-Energy system based on waste gasification using particle swarm optimization DOI

Xiaotuo Qiao,

Jiaxin Ding,

She Chen

и другие.

Energy Conversion and Management, Год журнала: 2024, Номер 317, С. 118844 - 118844

Опубликована: Авг. 6, 2024

Язык: Английский

Процитировано

7

Performance Evaluation of an Optimized Simplified Nonlinear Active Disturbance Rejection Controller for Rotor Current Control of DFIG-Based Wind Energy System DOI Creative Commons
Ahmed Sobhy, Medhat Hegazy Elfar, Ahmed Refaat

и другие.

Cleaner Engineering and Technology, Год журнала: 2025, Номер unknown, С. 100896 - 100896

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Active heave compensation of marine winch based on hybrid neural network prediction and sliding mode controller with a high-gain observer DOI
Wenhua Li, Changqing Wu,

Shanying Lin

и другие.

Ocean Engineering, Год журнала: 2025, Номер 322, С. 120448 - 120448

Опубликована: Янв. 28, 2025

Язык: Английский

Процитировано

0

Multi-stage adaptive speed control with torque ripple optimization for a switched reluctance motor in electric vehicle applications DOI Creative Commons
Youness Boumaalif, Hamid Ouadi, F. Giri

и другие.

Results in Engineering, Год журнала: 2025, Номер 25, С. 104245 - 104245

Опубликована: Фев. 6, 2025

Язык: Английский

Процитировано

0