An improved hybrid model for wind power forecasting through fusion of deep learning and adaptive online learning DOI
Xinwei Zhao,

Hai Peng Liu,

Huaiping Jin

и другие.

Computers & Electrical Engineering, Год журнала: 2024, Номер 120, С. 109768 - 109768

Опубликована: Ноя. 13, 2024

Язык: Английский

A hybrid wind speed forecasting model with two-stage data processing based on adaptive neuro-fuzzy inference systems and deep learning algorithms DOI
Zhongda Tian, D. H. Wei

Earth Science Informatics, Год журнала: 2025, Номер 18(1)

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

2

A new paradigm based on Wasserstein Generative Adversarial Network and time-series graph for integrated energy system forecasting DOI
Zhirui Tian, Mei Gai

Energy Conversion and Management, Год журнала: 2025, Номер 326, С. 119484 - 119484

Опубликована: Янв. 13, 2025

Язык: Английский

Процитировано

2

WindForecastX: a dynamic approach for accurate long-term wind speed prediction in wind energy applications DOI
Sasi Rekha Sankar,

P. Madhavan

Ocean Dynamics, Год журнала: 2025, Номер 75(1)

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

Short-term wind speed forecasting based on a novel KANInformer model and improved dual decomposition DOI

Zhiyuan Leng,

Chen Lü, Bin Yi

и другие.

Energy, Год журнала: 2025, Номер unknown, С. 135551 - 135551

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

1

A new multi-objective ensemble wind speed forecasting system: Mixed-frequency interval-valued modeling paradigm DOI
Wendong Yang,

Xinyi Zang,

C.L. Wu

и другие.

Energy, Год журнала: 2024, Номер 304, С. 131963 - 131963

Опубликована: Июнь 10, 2024

Язык: Английский

Процитировано

7

Artificial intelligence-based forecasting models for integrated energy system management planning: An exploration of the prospects for South Africa DOI Creative Commons
Senthil Krishnamurthy, Oludamilare Bode Adewuyi,

Emmanuel Luwaca

и другие.

Energy Conversion and Management X, Год журнала: 2024, Номер 24, С. 100772 - 100772

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

6

A bi-level mode decomposition framework for multi-step wind power forecasting using deep neural network DOI Creative Commons
Jingxuan Wu, Shuting Li, Juan C. Vásquez

и другие.

Energy Conversion and Management X, Год журнала: 2024, Номер 23, С. 100650 - 100650

Опубликована: Июнь 22, 2024

The proportion of wind energy in global structure is growing rapidly, promoting the development power forecasting (WPF) technologies to solve uncertainty and intermittence generation. However, nonlinear stochastic features time series restrain accuracy multi-step prediction performance. A WPF (MS-WPF) approach based on a bi-level empirical mode decomposition (BLEMD) method BiLSTM neural network proposed this paper improve regional generators. Since always generated through coupled factors from both weather-to-power conversion, linearity feature first introduced as an aspect apart frequency decompose sequence data. BLEMD introduces Pearson product-moment correlation coefficient evaluate linearity-based algorithm designed accordingly. To further enhance precision release computation burdens, DL-based strategy, including network, CNN-BiLSTM mean weight estimation are implemented predict components separately. only relies local data, greatly reducing data acquisition cost. MS-WPF verified by 2.5kW turbine with horizons 5 seconds 30 seconds, 1.5MW 10 minutes 1 hour, 51MW farm hour 6 hours. comparative experimental results other cutting-edge methods indicated that has superior stable performance for prediction.

Язык: Английский

Процитировано

5

A synchronized multi-step wind speed prediction with adaptive features and parameters selection: Insights from an interaction model DOI
Wenxin Xia, Jinxing Che, Kun Hu

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 255, С. 124764 - 124764

Опубликована: Июль 14, 2024

Язык: Английский

Процитировано

5

A novel interpretability machine learning model for wind speed forecasting based on feature and sub-model selection DOI
Zhihao Shang, Yanhua Chen,

Daokai Lai

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 255, С. 124560 - 124560

Опубликована: Июнь 27, 2024

Язык: Английский

Процитировано

4

Incorporating key features from structured and unstructured data for enhanced carbon trading price forecasting with interpretability analysis DOI

Ming Jiang,

Jinxing Che, Shuying Li

и другие.

Applied Energy, Год журнала: 2025, Номер 382, С. 125301 - 125301

Опубликована: Янв. 8, 2025

Язык: Английский

Процитировано

0