Energy Conversion and Management, Год журнала: 2025, Номер 339, С. 119917 - 119917
Опубликована: Май 21, 2025
Язык: Английский
Energy Conversion and Management, Год журнала: 2025, Номер 339, С. 119917 - 119917
Опубликована: Май 21, 2025
Язык: Английский
Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Фев. 6, 2025
Abstract This article introduces a novel optimization approach to improve the parameter estimation of proton exchange membrane fuel cells (PEMFCs), which are critical for diverse applications but challenging model due their nonlinear behavior. The proposed method, HGS-MPA, enhances Hunger Games Search (HGS) algorithm by integrating Marine Predator Algorithm (MPA) operators, significantly boosting its exploitation capabilities and convergence rate. effectiveness HGS-MPA was validated on three commercial PEMFC datasets: 250-W stack, BCS 500-W, NedStack PS6, using Sum Squared Error (SSE) as performance metric. Experimental results highlight that achieves minimum fitness values 0.33770, 1.31620, 0.01174 respective datasets, outperforming other state-of-the-art algorithms. These findings underscore method’s potential accurate estimation, offering enhanced reliability.
Язык: Английский
Процитировано
2Multiscale and Multidisciplinary Modeling Experiments and Design, Год журнала: 2025, Номер 8(4)
Опубликована: Март 15, 2025
Язык: Английский
Процитировано
1International Journal of Hydrogen Energy, Год журнала: 2025, Номер 102, С. 594 - 608
Опубликована: Янв. 11, 2025
Язык: Английский
Процитировано
0Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Март 8, 2025
High efficiency and eco friendliness, proton exchange membrane fuel cells (PEMFCs) have become a good solution to cleaner energy solutions. However, due the electrochemical complexity of PEMFCs limitations existing optimization methods, accurately estimating PEMFC parameters achieve optimal performance is still challenging. In this work, we propose hybrid algorithm, SCPSO, combining Particle Swarm Optimization with Mixed Mutant Slime Mold improve precision, consistency, computational in parameter optimization. Six types, BCS 500 W, Nedstack 600 W PS6, SR-12 Horizon H-12, Ballard Mark V, STD 250 Stack were applied SCPSO compared seven state-of-the-art algorithms, FLA, HFPSO, PSOLC, ESMA, LSMA, DETDO, EGJO. all cases, consistently outperformed competitors lowest mean sum squared error (SSE) minimal standard deviation (e.g., [10−16, 10−18]), thus confirming its robustness reliability. Additionally, it demonstrated number iterations reach (less than 200 iterations) best Friedman Rank (FR = 1), signifying customer. For instance, PEMFC1, achieved SSE 0.02549 negligible variability (Std. 1.05958E−15) as HFPSO 0.001998568) DETDO 4). SCPSO's rapid convergence curves, narrow box plot spreads, precise polarization curves further validated across cells. was experimentally proved be reliable deviations between predicted experimental voltage power outputs RE 0.052587% for PEMFC1 0.016537% PEMFC2). The average runtime 3.05 s, which faster alternatives, maintains unparalleled precision. results analyses, fitting datasets confirm that adaptive tuning has significantly improved performance, resulting highest consistency accuracy fastest speed. optimization, from established algorithm strongest precision stability efficiency. extension other systems dynamic real time scenarios will investigated future research enable wider adoption sustainable management.
Язык: Английский
Процитировано
0Ionics, Год журнала: 2025, Номер unknown
Опубликована: Март 17, 2025
Язык: Английский
Процитировано
0Energy, Год журнала: 2025, Номер unknown, С. 136079 - 136079
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Energy Conversion and Management, Год журнала: 2025, Номер 339, С. 119917 - 119917
Опубликована: Май 21, 2025
Язык: Английский
Процитировано
0