Latent Information in the Evolving Energy Structure DOI Open Access
Boqiang Lin, Yitong Zhu

Journal of Global Information Management, Год журнала: 2024, Номер 32(1), С. 1 - 21

Опубликована: Ноя. 10, 2024

Recent studies indicate that Artificial Intelligence (AI) technology, characterized by its integration of information and communication technology attributes, exerts a multifaceted influence on the energy system. The authors employ Difference-in-Differences (DID) Triple-Difference (DDD) models to investigate effects AI. research initially demonstrates AI may exhibit dual attributes constraining structure. Specifically, rapid development tends increase proportion fossil fuel-based electricity generation while optimizing consumption renewable energy. Furthermore, degradation structure stems from surge in AI, which capacity is unable satisfy. Lastly, industrial agglomeration construction digital economy have positive impacts energy; technological innovation aids mitigating negative shocks This study provides new perspective role transition.

Язык: Английский

Supply chain challenges and energy insecurity: The role of AI in facilitating renewable energy transition DOI
Lingxiao Li, Jun Wen,

Yan Jun Li

и другие.

Energy Economics, Год журнала: 2025, Номер unknown, С. 108378 - 108378

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Can artificial intelligence technology improve green total factor efficiency in energy utilisation? Empirical evidence from 282 cities in China DOI

Yingji Liu,

Ju Guo,

Fei Shen

и другие.

Economic Change and Restructuring, Год журнала: 2025, Номер 58(2)

Опубликована: Март 13, 2025

Язык: Английский

Процитировано

0

Assessing the impact of artificial intelligence on the transition to renewable energy? Analysis of U.S. states under policy uncertainty DOI
Yuzhu Fang, Chi‐Chuan Lee, X Li

и другие.

Renewable Energy, Год журнала: 2025, Номер unknown, С. 122969 - 122969

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Design of a meta-heuristic artificial intelligence (AI) model for an optimal photovoltaic module cooling system DOI Creative Commons
Armel Zambou Kenfack, Symphorien Tchimoe Kemle, Modeste Kameni Nematchoua

и другие.

Deleted Journal, Год журнала: 2025, Номер 7(4)

Опубликована: Март 27, 2025

Язык: Английский

Процитировано

0

Inhibiting or exacerbating? Digital financial inclusion and renewable energy efficiency DOI Creative Commons
Jing Zheng, Baoliu Liu, Yujie Huang

и другие.

Science Progress, Год журнала: 2025, Номер 108(2)

Опубликована: Март 31, 2025

Fully analyzing the impact and role of digital inclusive finance on improvement renewable energy efficiency plays an important in realizing long-term sustainable development regional economy. This research undertakes a comprehensive empirical examination to investigate influence financial growth across 30 Chinese provinces cities, spanning from 2011 2021. The results demonstrate that advancement significantly improves energy. variations indicates while inclusion markedly enhances both eastern western areas, its remains negligible central region. In addition, our influencing mechanism show progress science technology, alongside effectiveness services, boosts beneficial effects enhancement efficiency. Furthermore, degrees innovation technology services act as singular threshold for Our study provides new evidence implications fully combination between efficiency, thereby promoting development.

Язык: Английский

Процитировано

0

Assessing the relevance of the Granger non-causality test for energy policymaking: theoretical and empirical insights DOI
Brahim Bergougui, Manuel A. Zambrano‐Monserrate

Energy Strategy Reviews, Год журнала: 2025, Номер 59, С. 101743 - 101743

Опубликована: Апрель 23, 2025

Язык: Английский

Процитировано

0

A Thematic Review of AI and ML in Sustainable Energy Policies for Developing Nations DOI Creative Commons
Hassan Qudrat‐Ullah

Energies, Год журнала: 2025, Номер 18(9), С. 2239 - 2239

Опубликована: Апрель 28, 2025

The growing global energy demand and the pursuit of sustainability highlight transformative potential artificial intelligence (AI) machine learning (ML) in systems. This thematic review explores their applications generation, transmission, consumption, emphasizing role optimizing renewable integration, enhancing operational efficiency, enabling data-driven decision-making. By employing a approach, this study categorizes analyzes key challenges opportunities, including economic considerations, technological advancements, social implications. While AI/ML technologies offer significant benefits, adoption developing nations faces challenges, such as high upfront costs, skill shortages, infrastructure limitations. Addressing these barriers through capacity building, international collaboration, adaptive policies is critical to realizing equitable sustainable integration

Язык: Английский

Процитировано

0

The Spatial Spillover Impact of Artificial Intelligence on Energy Efficiency: Empirical Evidence from 278 Chinese Cities DOI
Yong Wang, Wenhao Zhao,

Xuejiao Ma

и другие.

Energy, Год журнала: 2024, Номер unknown, С. 133497 - 133497

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

3

The impact of artificial intelligence on the energy transition: The role of regulatory quality as a guardrail, not a wall DOI
Zequn Dong,

Chaodan Tan,

Biao Ma

и другие.

Energy Economics, Год журнала: 2024, Номер unknown, С. 107988 - 107988

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

1

The impact of artificial intelligence on global energy vulnerability DOI
Qingyuan Zhu, Chenhao Sun, Chengzhen Xu

и другие.

Economic Analysis and Policy, Год журнала: 2024, Номер unknown

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

1