Lecture notes in civil engineering, Год журнала: 2025, Номер unknown, С. 87 - 101
Опубликована: Янв. 1, 2025
Язык: Английский
Lecture notes in civil engineering, Год журнала: 2025, Номер unknown, С. 87 - 101
Опубликована: Янв. 1, 2025
Язык: Английский
Applied Energy, Год журнала: 2023, Номер 333, С. 120598 - 120598
Опубликована: Янв. 10, 2023
Язык: Английский
Процитировано
59Journal of Building Engineering, Год журнала: 2024, Номер 96, С. 110445 - 110445
Опубликована: Авг. 13, 2024
Язык: Английский
Процитировано
34Journal of Building Engineering, Год журнала: 2024, Номер 94, С. 110013 - 110013
Опубликована: Июнь 21, 2024
Язык: Английский
Процитировано
29Energy, Год журнала: 2022, Номер 263, С. 125943 - 125943
Опубликована: Ноя. 3, 2022
Язык: Английский
Процитировано
66Smart Energy, Год журнала: 2024, Номер 13, С. 100131 - 100131
Опубликована: Янв. 26, 2024
Traditionally, building control systems for heating, ventilation, and air conditioning (HVAC) relied on rule-based scheduler systems. Deep reinforcement learning techniques have the ability to learn optimal policies from data without need explicit programming or domain-specific knowledge. However, these data-driven methods require considerable time effective prior Performing transfer using pre-trained models avoids underlying scratch, thus saving resources. In this work, we evaluate as a method of pretraining fine-tuning neural networks HVAC control. First, train an RL agent in simulation environment obtain foundation model. We then fine-tune model two separate environments such that one simulates same under different weather conditions while other conditions. perform experiments with reward functions their effect learning. The results indicate agents outperform controller show improvements range 1% 4% when compared trained scratch.
Язык: Английский
Процитировано
17Energy and Buildings, Год журнала: 2024, Номер 312, С. 114189 - 114189
Опубликована: Апрель 20, 2024
Язык: Английский
Процитировано
13Energy, Год журнала: 2024, Номер 297, С. 131159 - 131159
Опубликована: Апрель 4, 2024
Язык: Английский
Процитировано
12Energy, Год журнала: 2024, Номер 292, С. 130505 - 130505
Опубликована: Янв. 29, 2024
Язык: Английский
Процитировано
11Building Simulation, Год журнала: 2024, Номер 17(5), С. 739 - 770
Опубликована: Фев. 20, 2024
Abstract Deep Reinforcement Learning (DRL)-based control shows enhanced performance in the management of integrated energy systems when compared with Rule-Based Controllers (RBCs), but it still lacks scalability and generalisation due to necessity using tailored models for training process. Transfer (TL) is a potential solution address this limitation. However, existing TL applications building have been mostly tested among buildings similar features, not addressing need scale up advanced real-world scenarios diverse systems. This paper assesses an online heterogeneous strategy, comparing RBC offline DRL controllers simulation setup EnergyPlus Python. The study tests transfer both transductive inductive settings policy designed manage chiller coupled Thermal Energy Storage (TES). pre-trained on source transferred various target characterised by system including photovoltaic battery storage systems, different envelope occupancy schedule boundary conditions (e.g., weather price signal). approach incorporates model slicing, imitation learning fine-tuning handle state spaces reward functions between buildings. Results show that proposed methodology leads reduction 10% electricity cost 40% mean value daily average temperature violation rate controllers. Moreover, maximises self-sufficiency self-consumption 9% 11% respect RBC. Conversely, achieves worse either or settings. (DRL) agents should be trained at least 15 episodes reach same level as TL. Therefore, effective, completely model-free can directly implemented real satisfying performance.
Язык: Английский
Процитировано
10Energy, Год журнала: 2023, Номер 278, С. 127972 - 127972
Опубликована: Май 31, 2023
Язык: Английский
Процитировано
24