Ecological Informatics, Год журнала: 2023, Номер 77, С. 102270 - 102270
Опубликована: Авг. 22, 2023
Язык: Английский
Ecological Informatics, Год журнала: 2023, Номер 77, С. 102270 - 102270
Опубликована: Авг. 22, 2023
Язык: Английский
Entropy, Год журнала: 2023, Номер 25(4), С. 647 - 647
Опубликована: Апрель 12, 2023
Accurate wind power prediction can increase the utilization rate of generation and maintain stability system. At present, a large number studies are based on mean square error (MSE) loss function, which generates many errors when predicting original data with random fluctuation non-stationarity. Therefore, hybrid model for named IVMD-FE-Ad-Informer, is Informer an adaptive function combines improved variational mode decomposition (IVMD) fuzzy entropy (FE), proposed. Firstly, decomposed into K subsequences by IVMD, possess distinct frequency domain characteristics. Secondly, sub-series reconstructed new elements using FE. Then, robust Ad-Informer predicts predicted values each element superimposed to obtain final results power. Finally, analyzed evaluated two real datasets collected from farms in China Spain. The demonstrate that proposed superior other models performance accuracy different datasets, this effectively meet demand actual prediction.
Язык: Английский
Процитировано
13Expert Systems with Applications, Год журнала: 2023, Номер 230, С. 120619 - 120619
Опубликована: Июнь 5, 2023
Язык: Английский
Процитировано
13PLoS ONE, Год журнала: 2023, Номер 18(9), С. e0289161 - e0289161
Опубликована: Сен. 8, 2023
Wind energy, as a kind of environmentally friendly renewable has attracted lot attention in recent decades. However, the security and stability power system is potentially affected by large-scale wind grid due to randomness intermittence speed. Therefore, accurate speed prediction conductive operation. A hybrid model based on Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN), Multiscale Fuzzy Entropy (MFE), Long short-term memory (LSTM) INFORMER proposed this paper. Firstly, data are decomposed into multiple intrinsic mode functions (IMFs) ICEEMDAN. Then, MFE values each calculated, modes similar aggregated obtain new subsequences. Finally, subsequence predicted informer LSTM, sequence selects one better performance than two predictors, results superimposed final results. The also compared other seven related models four evaluation metrics under different periods verify its validity applicability. experimental indicate that ICEEMDAN, MFE, LSTM exhibits higher accuracy greater
Язык: Английский
Процитировано
13Applied Energy, Год журнала: 2023, Номер 353, С. 122015 - 122015
Опубликована: Окт. 4, 2023
Язык: Английский
Процитировано
13Ecological Informatics, Год журнала: 2023, Номер 77, С. 102270 - 102270
Опубликована: Авг. 22, 2023
Язык: Английский
Процитировано
12