Elsevier eBooks, Год журнала: 2024, Номер unknown, С. 141 - 162
Опубликована: Окт. 1, 2024
Язык: Английский
Elsevier eBooks, Год журнала: 2024, Номер unknown, С. 141 - 162
Опубликована: Окт. 1, 2024
Язык: Английский
International Journal of Hydrogen Energy, Год журнала: 2024, Номер 83, С. 1 - 12
Опубликована: Авг. 8, 2024
Язык: Английский
Процитировано
10Energy, Год журнала: 2024, Номер 303, С. 131919 - 131919
Опубликована: Июнь 3, 2024
Язык: Английский
Процитировано
5ACS Applied Energy Materials, Год журнала: 2024, Номер unknown
Опубликована: Сен. 19, 2024
Язык: Английский
Процитировано
5Process Safety and Environmental Protection, Год журнала: 2024, Номер 191, С. 193 - 205
Опубликована: Авг. 24, 2024
Язык: Английский
Процитировано
4Industrial & Engineering Chemistry Research, Год журнала: 2024, Номер 63(44), С. 18940 - 18956
Опубликована: Окт. 25, 2024
Carbon materials possess active sites and functionalities on the surface that can attract prominent interest as solid adsorbents for diverse gas adsorption. This study aimed to predict optimized methane uptake, adsorption energy (Ead), adsorbent rediscovery through multitechniques of neural, regression, classifier ML-DFT, Uniform Manifold Approximation Projection (UMAP). Nitrogen oxygen (N/O) graphene, graphene oxide (GO), N-doped GO were applied storage medium. Multi-ML algorithms employed CH4 uptake (i) N/O such pyridinic (N-py), carboxyl (O–II), oxidized (N-x), hydroxyl (O-h), Nitroso (N-ni), Amine (primary, secondary, tertiary). (ii) The surfaces are decorated with heteroatoms construct (GO) GO. DFT calculations by PW91 Dmol3 package. N/O-functionalities in distance ∼2.0 3.1 Å groups obtained Ead approximately −2.0 −4 eV. Further, ML models accomplished forthcoming physisorption using multiadsorptive features an R2 0.99. ML-derived sensitivity analysis approach was specifications deformation energy, functionality type, structure. indicate levels −0.03 0.02 synergetic DFT/ML approaches distinguished modeled rediscovered phases functional structures. UMAP is a new screening play complementary role modeling process.
Язык: Английский
Процитировано
3International Journal of Hydrogen Energy, Год журнала: 2024, Номер 95, С. 695 - 709
Опубликована: Ноя. 21, 2024
Язык: Английский
Процитировано
3Energy, Год журнала: 2025, Номер unknown, С. 136291 - 136291
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Clean Energy Production Technologies, Год журнала: 2025, Номер unknown, С. 375 - 398
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Soil Use and Management, Год журнала: 2025, Номер 41(2)
Опубликована: Апрель 1, 2025
ABSTRACT The prediction of crop yield is significant interest for growers utilising biochar on land, while managers prioritise the enhancement soil organic carbon (SOC). However, it remains unclear to what extent machine learning can accurately predict or SOC when applied soil. In this study, Random Forest (RF) and Multilayer Perceptron Neural Network (MLP‐NN) models were employed with 297 paired data from field trials. results indicated that RF model (test R 2 = 0.83) did not differ significantly MLP‐NN 0.84) in predicting yield. 0.87) performs better than 0.53) SOC. most influential features found be application rate (15%), initial (13%), pH (10%), TP (10%). contrast, variation was primarily influenced by latitude (26%), (22%), (13%). Furthermore, both multiple factors, solely one, their impacts necessarily linear. This study suggests optimization phosphorus content, along regulation its sandy clay‐rich soils, simultaneously enhance future, we hope develop a decision support system prediction, different scenarios, consultation capabilities based geospatial location.
Язык: Английский
Процитировано
0Clean Technologies and Environmental Policy, Год журнала: 2025, Номер unknown
Опубликована: Май 28, 2025
Язык: Английский
Процитировано
0