Short-term power load forecast using OOA optimized bidirectional long short-term memory network with spectral attention for the frequency domain DOI Creative Commons

Jingrui Liu,

Zhiwen Hou,

Tianxiang Yin

и другие.

Energy Reports, Год журнала: 2024, Номер 12, С. 4891 - 4908

Опубликована: Ноя. 6, 2024

Язык: Английский

Enhancing wind speed forecasting through synergy of machine learning, singular spectral analysis, and variational mode decomposition DOI
Sinvaldo Rodrigues Moreno, Laio Oriel Seman, Stéfano Frizzo Stefenon

и другие.

Energy, Год журнала: 2024, Номер 292, С. 130493 - 130493

Опубликована: Янв. 27, 2024

Язык: Английский

Процитировано

46

An advanced framework for net electricity consumption prediction: Incorporating novel machine learning models and optimization algorithms DOI
Xuetao Li, Ziwei Wang, Chengying Yang

и другие.

Energy, Год журнала: 2024, Номер 296, С. 131259 - 131259

Опубликована: Апрель 9, 2024

Язык: Английский

Процитировано

44

Prediction of wind and PV power by fusing the multi-stage feature extraction and a PSO-BiLSTM model DOI
Simin Peng, Junchao Zhu, Tiezhou Wu

и другие.

Energy, Год журнала: 2024, Номер 298, С. 131345 - 131345

Опубликована: Апрель 17, 2024

Язык: Английский

Процитировано

38

Wind power forecasting method of large-scale wind turbine clusters based on DBSCAN clustering and an enhanced hunter-prey optimization algorithm DOI
Guolian Hou, Junjie Wang, Yuzhen Fan

и другие.

Energy Conversion and Management, Год журнала: 2024, Номер 307, С. 118341 - 118341

Опубликована: Март 28, 2024

Язык: Английский

Процитировано

17

Electric vehicle charging load forecasting considering weather impact DOI
Wenhao Wang, Aihong Tang, Feng Wei

и другие.

Applied Energy, Год журнала: 2025, Номер 383, С. 125337 - 125337

Опубликована: Янв. 20, 2025

Язык: Английский

Процитировано

3

Multi-step electric vehicles charging loads forecasting: An autoformer variant with feature extraction, frequency enhancement, and error correction blocks DOI
Fang Cheng, Hui Liu

Applied Energy, Год журнала: 2024, Номер 376, С. 124308 - 124308

Опубликована: Авг. 27, 2024

Язык: Английский

Процитировано

8

A reconstruction-based secondary decomposition-ensemble framework for wind power forecasting DOI

Runkun Cheng,

Di Yang,

Da Liu

и другие.

Energy, Год журнала: 2024, Номер 308, С. 132895 - 132895

Опубликована: Авг. 19, 2024

Язык: Английский

Процитировано

7

A wind power forecasting model based on data decomposition and cross-attention mechanism with cosine similarity DOI
Jiang Li, Yifan Wang

Electric Power Systems Research, Год журнала: 2024, Номер 229, С. 110156 - 110156

Опубликована: Янв. 22, 2024

Язык: Английский

Процитировано

6

Review of AI-Based Wind Prediction within Recent Three Years: 2021–2023 DOI Creative Commons
Dongran Song, Xiao Tan, Qian Huang

и другие.

Energies, Год журнала: 2024, Номер 17(6), С. 1270 - 1270

Опубликована: Март 7, 2024

Wind prediction has consistently been in the spotlight as a crucial element achieving efficient wind power generation and reducing operational costs. In recent years, with rapid advancement of artificial intelligence (AI) technology, its application field made significant strides. Focusing on process AI-based modeling, this paper provides comprehensive summary discussion key techniques models data preprocessing, feature extraction, relationship learning, parameter optimization. Building upon this, three major challenges are identified prediction: uncertainty data, incompleteness complexity learning. response to these challenges, targeted suggestions proposed for future research directions, aiming promote effective AI technology address issues therein.

Язык: Английский

Процитировано

6

A comparative study of principal component analysis and kernel principal component analysis for photogrammetric shape-based turbine blade damage analysis DOI
Benjamin Gwashavanhu, A.J. Oberholster, P. Stephan Heyns

и другие.

Engineering Structures, Год журнала: 2024, Номер 318, С. 118712 - 118712

Опубликована: Июль 31, 2024

Язык: Английский

Процитировано

5