Comparative Analysis of Energy Efficiency between Battery Electric Buses and Modular Autonomous Vehicles DOI Creative Commons
Ioan-Tudor Oargă, Gabriel Prunean, Bogdan Ovidiu Varga

и другие.

Applied Sciences, Год журнала: 2024, Номер 14(11), С. 4389 - 4389

Опубликована: Май 22, 2024

This paper presents the initial steps taken in analysing benefits of connected autonomous vehicles (CAVs), especially Modular Autonomous Vehicles (MAVs), search sustainable solutions for reducing energy consumption per passenger air transport. For this particular case, a Mobility-as-a-Service (MaaS) solution is proposed, correlating airside transport with landside transport, as an urban mobility alternative. To better understand proposal, studies impact on conceptual differences between conventional public fleet using Battery Electric Buses (BEBs) and MAV fleet. Simulations simple tasks are performed to highlight advantages modular vehicle concept, which routes assigned dynamically based requested carrying capacity travel distance, aiming optimize efficiency entire system. With proven reduction due use available reduced times driving number passengers less than half its capacity, concept can be addressed further developing predictive system that processes data delivers optimized schedule The main goal being improve overall operational total cost ownership, second part weight distribution parameters such consumption, range, performance electric bus. dynamic elements acceleration, braking, cornering analyzed, assess viability safety all types bus operations.

Язык: Английский

Modeling and temperature control of a water-cooled PEMFC system using intelligent algorithms DOI
Junhong Chen,

Pu He,

Sai-Jie Cai

и другие.

Applied Energy, Год журнала: 2024, Номер 372, С. 123790 - 123790

Опубликована: Июль 2, 2024

Язык: Английский

Процитировано

30

Comprehensive optimization of fuzzy logic-based energy management system for fuel-cell hybrid electric vehicle using genetic algorithm DOI
Abdesattar Mazouzi, Nadji Hadroug, Walaa Alayed

и другие.

International Journal of Hydrogen Energy, Год журнала: 2024, Номер 81, С. 889 - 905

Опубликована: Июль 26, 2024

Язык: Английский

Процитировано

23

Deep reinforcement learning-based energy management strategy for fuel cell buses integrating future road information and cabin comfort control DOI
Chunchun Jia, Wei Liu,

Hongwen He

и другие.

Energy Conversion and Management, Год журнала: 2024, Номер 321, С. 119032 - 119032

Опубликована: Сен. 11, 2024

Язык: Английский

Процитировано

21

Comprehensive Review of Hydrogen Leakage in Relation to Fuel Cell Vehicles and Hydrogen Refueling Stations: Status, Challenges, and Future Prospects DOI
Donghai Hu, Peng Gao, Zhaoxu Cheng

и другие.

Energy & Fuels, Год журнала: 2024, Номер 38(6), С. 4803 - 4835

Опубликована: Март 11, 2024

As fuel cell vehicles (FCVs) are increasingly put on the market and hydrogen refueling stations (HRSs) built accordingly, fatal accidents caused by explosion due to leakage reported have become a critical issue. The results from complicated processes associated with so-called jet diffusion when leaks FCVs or HRSs, demonstrating its sophisticated characteristics presenting significant technical challenges. Recently, particularly in past few years, researchers established variety of theoretical models reveal relevant mechanisms introduced series monitoring/diagnostic approaches detect control hazards. This comprehensive review summarizes major research outcomes state-of-the-art progresses relation including (1) subsonic jets, (2) underexpanded (3) behavior, (4) hazard reduction methods for confined free spaces, (5) four types widely used detection technologies, (6) application diagnostic different systems. An insight is that related HRSs should be combined realistic characteristics. jets generated real gaps discussed, proposed based spaces. It suggested that, order integrate evaluate multiple sensor data points more accurately determine location level, artificial intelligence technologies could resolve issues encountered currently.

Язык: Английский

Процитировано

16

Experimental validation of a predictive energy management strategy for agricultural fuel cell electric tractors DOI
Christian Varlese, Alessandro Ferrara, Christoph Hametner

и другие.

International Journal of Hydrogen Energy, Год журнала: 2024, Номер 77, С. 1 - 14

Опубликована: Июнь 15, 2024

Язык: Английский

Процитировано

12

Feedback-linearization decoupling based coordinated control of air supply and thermal management for vehicular fuel cell system DOI

Dafeng Song,

Qingtao Wu,

Xiaohua Zeng

и другие.

Energy, Год журнала: 2024, Номер 305, С. 132347 - 132347

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

11

Energy Intelligence: A Systematic Review of Artificial Intelligence for Energy Management DOI Creative Commons
Ashkan Safari, Mohammadreza Daneshvar, Amjad Anvari‐Moghaddam

и другие.

Applied Sciences, Год журнала: 2024, Номер 14(23), С. 11112 - 11112

Опубликована: Ноя. 28, 2024

Artificial intelligence (AI) and machine learning (ML) can assist in the effective development of power system by improving reliability resilience. The rapid advancement AI ML is fundamentally transforming energy management systems (EMSs) across diverse industries, including areas such as prediction, fault detection, electricity markets, buildings, electric vehicles (EVs). Consequently, to form a complete resource for cognitive techniques, this review paper integrates findings from more than 200 scientific papers (45 reviews 155 research studies) addressing utilization EMSs its influence on sector. additionally investigates essential features smart grids, big data, their integration with EMS, emphasizing capacity improve efficiency reliability. Despite these advances, there are still additional challenges that remain, concerns regarding privacy integrating different systems, issues related scalability. finishes analyzing problems providing future perspectives ongoing use EMS.

Язык: Английский

Процитировано

11

Enhancing fuel cell electric vehicle efficiency with TIP-EMS: A trainable integrated predictive energy management approach DOI
Jingda Wu, Jiankun Peng, Menglin Li

и другие.

Energy Conversion and Management, Год журнала: 2024, Номер 310, С. 118499 - 118499

Опубликована: Май 4, 2024

Язык: Английский

Процитировано

10

Reinforcement learning based energy management for fuel cell hybrid electric vehicles: A comprehensive review on decision process reformulation and strategy implementation DOI
Jianwei Li, Jie Liu, Qingqing Yang

и другие.

Renewable and Sustainable Energy Reviews, Год журнала: 2025, Номер 213, С. 115450 - 115450

Опубликована: Фев. 10, 2025

Язык: Английский

Процитировано

2

Optimal Flexible Power Allocation Energy Management Strategy for Hybrid Energy Storage System with Genetic Algorithm Based Model Predictive Control DOI
Bin Ma, Penghui Li

Energy, Год журнала: 2025, Номер unknown, С. 135958 - 135958

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

2