Renewable and Sustainable Energy Reviews, Год журнала: 2024, Номер 211, С. 115303 - 115303
Опубликована: Дек. 31, 2024
Renewable and Sustainable Energy Reviews, Год журнала: 2024, Номер 211, С. 115303 - 115303
Опубликована: Дек. 31, 2024
Neural Computing and Applications, Год журнала: 2024, Номер unknown
Опубликована: Ноя. 18, 2024
Язык: Английский
Процитировано
10Reliability Engineering & System Safety, Год журнала: 2024, Номер 245, С. 110037 - 110037
Опубликована: Фев. 24, 2024
Язык: Английский
Процитировано
9IEEE Internet of Things Journal, Год журнала: 2024, Номер 11(13), С. 24073 - 24082
Опубликована: Апрель 16, 2024
As a classical and crucial component in industrial systems, the manipulators are widely employed precision manufacturing scenarios because of their advantages high stiffness, large load support capability, precision. During service, it is inevitable that they encounter data imbalance due to occasional low-frequency failure behaviors. But order address these issues, majority approaches already use need assistance extra tools. Thus, novel intelligent health state diagnosis model, named multiple neighbor homogeneous property-embedded graph auto-encoder (MNHP-GAE), developed get around this restriction apply manipulators. Its core realize expansion enrichment feature space by mining effective complementary information from property samples without augmentation other technologies. Specifically, wavelet decomposition reconstruction dynamic time warping integrated promote quantification sample similarity enable construction samples. Following that, unique module with multi-head attention mechanism constructed extract nodes match for diagnostic tasks. Finally, through multi-case experimental validation scenario 3-PRR planar parallel manipulator platform, superior performances proposed MNHP-GAE model highly unbalanced fully demonstrated.
Язык: Английский
Процитировано
9Energy, Год журнала: 2025, Номер unknown, С. 135784 - 135784
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
1Knowledge-Based Systems, Год журнала: 2024, Номер 299, С. 112113 - 112113
Опубликована: Июнь 12, 2024
Язык: Английский
Процитировано
6Reliability Engineering & System Safety, Год журнала: 2024, Номер 246, С. 110079 - 110079
Опубликована: Март 14, 2024
Язык: Английский
Процитировано
5Reliability Engineering & System Safety, Год журнала: 2024, Номер 255, С. 110657 - 110657
Опубликована: Ноя. 13, 2024
Язык: Английский
Процитировано
4Опубликована: Фев. 26, 2025
Язык: Английский
Процитировано
0Mathematics, Год журнала: 2025, Номер 13(5), С. 797 - 797
Опубликована: Фев. 27, 2025
Intelligent fault diagnosis (IFD) plays a crucial role in reducing maintenance costs and enhancing the reliability of safety-critical energy systems (SCESs). In recent years, deep learning-based IFD methods have achieved high accuracy extracting implicit higher-order correlations between features. However, excessive long training time learning models conflicts with requirements real-time analysis for IFD, hindering their further application practical industrial environments. To address aforementioned challenge, this paper proposes an innovative method SCES that combines particle swarm optimization (PSO) algorithm ensemble broad system (EBLS). Specifically, (BLS), known its low complexity classification accuracy, is adopted as alternative to SCES. Furthermore, EBLS designed enhance model stability high-dimensional small samples by incorporating random forest (RF) strategy into traditional BLS framework. order reduce computational cost EBLS, which constrained selection hyperparameters, PSO employed optimize hyperparameters EBLS. Finally, validated through simulated data from complex nuclear power plant (NPP). Numerical experiments reveal proposed significantly improved diagnostic efficiency while maintaining accuracy. summary, approach shows great promise boosting capabilities
Язык: Английский
Процитировано
0Ocean Engineering, Год журнала: 2025, Номер 325, С. 120798 - 120798
Опубликована: Март 6, 2025
Язык: Английский
Процитировано
0