Wind Farm Cluster Power Prediction Based on Graph Deviation Attention Network with Learnable Graph Structure and Dynamic Error Correction During Load Peak and Valley Periods DOI
Mao Yang, Yunfeng Guo, Tao Huang

и другие.

Energy, Год журнала: 2024, Номер unknown, С. 133645 - 133645

Опубликована: Окт. 1, 2024

Язык: Английский

Interpretable multi-graph convolution network integrating spatial-temporal attention and dynamic combination for wind power forecasting DOI
Yongning Zhao, Haohan Liao, Shiji Pan

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 255, С. 124766 - 124766

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

7

BiLSTM-InceptionV3-Transformer-fully-connected model for short-term wind power forecasting DOI
Linfei Yin,

Yujie Sun

Energy Conversion and Management, Год журнала: 2024, Номер 321, С. 119094 - 119094

Опубликована: Сен. 25, 2024

Язык: Английский

Процитировано

5

A novel hybrid deep learning model for ultra-short-term prediction of wind speed DOI

Kai Liu,

Z.R. Shu, Pak Wai Chan

и другие.

Physics of Fluids, Год журнала: 2025, Номер 37(1)

Опубликована: Янв. 1, 2025

Accurate ultra-short-term wind speed prediction is critical for various engineering applications. Although decomposition-integration methods are widely used this purpose, several challenges remain. This study addresses these by integrating two-stage feature extraction, a combination weight model, and intelligent integration to improve accuracy. In the decomposition phase, two advanced employed reduce data complexity extract comprehensive features. During reconstruction, multiscale sample entropy applied balance computational efficiency with model complexity. To overcome limitations of individual forecasting models, combined incorporating deep learning approaches developed, weights adaptively optimized using Sparrow Search Algorithm. Additionally, address variability in subsequence contributions, based on models implemented, ensuring robust accurate final predictions. Validation from three Hong Kong Observatory weather stations demonstrates that proposed method outperforms benchmark achieving more-satisfactory accuracy, stability, robustness.

Язык: Английский

Процитировано

0

A dual-dimensionality reduction attention mechanism with fusion of high-dimensional features for wind power prediction DOI
Liexi Xiao, Anbo Meng, Jiayu Rong

и другие.

Renewable Energy, Год журнала: 2025, Номер unknown, С. 122950 - 122950

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

A Multi-Task Spatio-Temporal Fusion Network for Offshore Wind Power Ramp Events Forecasting DOI
Weiye Song, Jie Yan, Shuang Han

и другие.

Renewable Energy, Год журнала: 2024, Номер 237, С. 121774 - 121774

Опубликована: Окт. 30, 2024

Язык: Английский

Процитировано

0

Wind Farm Cluster Power Prediction Based on Graph Deviation Attention Network with Learnable Graph Structure and Dynamic Error Correction During Load Peak and Valley Periods DOI
Mao Yang, Yunfeng Guo, Tao Huang

и другие.

Energy, Год журнала: 2024, Номер unknown, С. 133645 - 133645

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

0