Forecasting power generation of wind turbine with real-time data using machine learning algorithms DOI Creative Commons
Asiye Bilgili,

Kerem Gül

Clean Technologies and Recycling, Год журнала: 2024, Номер 4(2), С. 108 - 124

Опубликована: Янв. 1, 2024

<p>The escalating concern over the adverse effects of greenhouse gas emissions on Earth's climate has intensified need for sustainable and renewable energy sources. Among alternatives, wind emerged as a key solution mitigating impacts global warming. The significance generation lies in its abundance, environmental benefits, cost-effectiveness contribution to security. Accurate forecasting is crucial managing intermittent nature ensuring effective integration into electricity grid. We employed machine learning techniques predict power by utilizing historical weather data conjunction with corresponding data. dataset was sourced from real-time SCADA obtained turbines, allowing comprehensive analysis. differentiated this research evaluating not only conditions but also meteorological factors physical measurements turbine components, thus considering their combined influence overall production. utilized Decision Tree, Random Forest, K-Nearest Neighbors (KNN), XGBoost algorithms estimate generation. performance these models assessed using evaluation criteria: R<sup>2</sup>, Mean Absolute Error (MAE), Squared (MSE), Root (RMSE), Percentage (MAPE). findings indicated algorithm outperformed other models, achieving high accuracy while demonstrating computational efficiency, making it particularly suitable applications forecasting.</p>

Язык: Английский

MLP-Carbon: A new paradigm integrating multi-frequency and multi-scale techniques for accurate carbon price forecasting DOI
Zhirui Tian, Wei Sun, Chenye Wu

и другие.

Applied Energy, Год журнала: 2025, Номер 383, С. 125330 - 125330

Опубликована: Янв. 15, 2025

Язык: Английский

Процитировано

1

Building the resilient food waste supply chain for the megacity: Based on the Multi-scale Progressive Fusion framework DOI

Tianrui Zhao,

Huihang Sun,

Yihe Wang

и другие.

Resources Conservation and Recycling, Год журнала: 2025, Номер 215, С. 108144 - 108144

Опубликована: Янв. 24, 2025

Язык: Английский

Процитировано

1

ISI Net: A novel paradigm integrating interpretability and intelligent selection in ensemble learning for accurate wind power forecasting DOI
Bingjie Liang, Zhirui Tian

Energy Conversion and Management, Год журнала: 2025, Номер 332, С. 119752 - 119752

Опубликована: Апрель 2, 2025

Язык: Английский

Процитировано

1

A novel probabilistic carbon price prediction model: Integrating the transformer framework with mixed-frequency modeling at different quartiles DOI

Mingyang Ji,

Jian Du, Pei Du

и другие.

Applied Energy, Год журнала: 2025, Номер 391, С. 125951 - 125951

Опубликована: Апрель 21, 2025

Язык: Английский

Процитировано

1

Short-term wind power forecasting based on multi-scale receptive field-mixer and conditional mixture copula DOI
Jinchang Li, Jiapeng Chen, Z. Q. Chen

и другие.

Applied Soft Computing, Год журнала: 2024, Номер 164, С. 112007 - 112007

Опубликована: Июль 17, 2024

Язык: Английский

Процитировано

5

A hybrid model based on CapSA-VMD-ResNet-GRU-attention mechanism for ultra-short-term and short-term wind speed prediction DOI
Donghan Geng, Yongkang Zhang, Yunlong Zhang

и другие.

Renewable Energy, Год журнала: 2024, Номер unknown, С. 122191 - 122191

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

5

Developing an interpretable wind power forecasting system using a transformer network and transfer learning DOI

Chaonan Tian,

Tong Niu, Tao Li

и другие.

Energy Conversion and Management, Год журнала: 2024, Номер 323, С. 119155 - 119155

Опубликована: Ноя. 18, 2024

Язык: Английский

Процитировано

3

A dual-optimization building energy prediction framework based on improved dung beetle algorithm, variational mode decomposition and deep learning DOI
Jiaxuan Liu,

Ziqiang Lv,

Liang Zhao

и другие.

Energy and Buildings, Год журнала: 2024, Номер unknown, С. 115143 - 115143

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

3

A Novel Wind Power Probabilistic Forecasting System Based on Transformer Networks and Multi-Objective Optimization DOI
Q.S. Shu, Yao Dong, Mengyuan Tong

и другие.

Опубликована: Янв. 1, 2025

With the increasing capacity of grid-connected wind power systems, forecasting has become a major research problem in systems under background dual-carbon policy, and it is great practical significance to develop reliable methods. In order overcome difficulties data noise reduction, feature extraction uncertainty estimation, new system proposed. The improved variational mode decomposition algorithm used denoise data, overcoming subjective parameter selection traditional method. time convolutional network, Transformer bidirectional long short-term memory network are extract sequence features comprehensively ensure that local, long-term, considered simultaneously. multi-objective Bayesian optimization achieve Pareto optimal solution, quantile regression set for interval forecasting, so as systematically enhance model ability. performance evaluated based on two different datasets England, taking Penmanshiel farm an example, at confidence level 0.10, MAE RMSE values low 17.23 21.25 respectively, while WS value high 74.10%. experimental results show proposed better point ability than comparison model.

Язык: Английский

Процитировано

0

Mixed-frequency fusion grey panel model for spatiotemporal prediction of photovoltaic power generation DOI

Z.J. Zuo,

Xinping Xiao,

Mingyun Gao

и другие.

Renewable Energy, Год журнала: 2025, Номер unknown, С. 123055 - 123055

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0